首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Double perovskite structure (A2BB′O6) oxides exhibit a breadth of multifunctional properties with a huge potential range of applications in fields as diverse as spintronics, magneto-optic devices, or catalysis, and most of these applications require the use of thin films and heterostructures. Chemical solution deposition techniques are appearing as a very promising methodology to achieve epitaxial oxide thin films combining high performance with high throughput and low cost. In addition, the physical properties of these materials are strongly dependent on the ordered arrangement of cations in the double perovskite structure. Thus, promoting spontaneous cationic ordering has become a relevant issue. In this work, our recent achievements by using polymer-assisted deposition (PAD) of environmentally friendly, water-based solutions for the growth of epitaxial ferromagnetic insulating double perovskite La2CoMnO6 and La2NiMnO6 thin films on SrTiO3 and LaAlO3 single-crystal substrates are presented. It is shown that the particular crystallization and growth process conditions of PAD (very slow rate, close to thermodynamic equilibrium conditions) promote high crystallinity and quality of the films, as well as favors spontaneous B-site cationic ordering.  相似文献   

2.
The preferential formation of a pyrochlore structure is a knotty problem in the preparation of Pb(Zn1/3Nb2/3)O3 (PZN)-based thin film materials and its presence is significantly detrimental to the dielectric and piezoelectric properties. In this study, 40 mol% of PZN was replaced with Pb(Mg1/3Nb2/3)O3 (PMN) for obtaining a perovskite composition around a morphotropic phase boundary (MPB), (1−x)(0.6PZN-0.4PMN)-xPT ((1−x)PZMN-xPT, PT: PbTiO3) where x = 0.23. The thin films with this composition were prepared with a polyethylene glycol (PEG) modi-fied sol-gel method on LaAlO3 substrates. The microstructural evolution of the films on heat treatment was examined with X-ray diffraction. With the aid of PEG, the formation of the pyrochlore phase was suppressed and the perovskite phase formed directly from the amorphous gel film. The multilayer films with a thickness around 0.25 μm showed a single perovskite phase without any detectable pyrochlore structure. Microscopic images showed uniform grain size of a few tens of nanometers. The role of the polymer dramatically promoting the perovskite phase was investigated with the aid of X-ray photoelectron spectroscopy and thermal analysis. The dielectric constant of the obtained film was 4160 at 1 kHz. The film demonstrated typical ferroelectric hysteresis loops and exhibited excellent piezoelectric performance.  相似文献   

3.
The influence of substrate temperature, process gas, deposition pressure, and substrate type on the phase selection, orientation/epitaxy, and growth morphology of thin films in the SrNbOy (y≈3.0 or 3.5) family was investigated. Pulsed laser deposited films (from a Sr2Nb2O7 target) obtained in both oxygen and nitrogen atmospheres upon various substrates were characterized with X-ray diffraction, energy dispersive spectroscopy, atomic force microscopy, and transmission electron microscopy. In oxygen atmospheres, films adopted the (110)-layered perovskite structure of the target. Higher temperatures, lower pressures of oxygen, and use of (110)-oriented SrTiO3 substrates lead to highly crystalline, epitaxial films of Sr2Nb2O7. The use of nitrogen atmospheres resulted in cubic perovskite SrNbO3 formation: epitaxial, textured, or polycrystalline films were obtained depending on the substrate; no nitrogen incorporation could be observed on the anion sublattice. On SrTiO3, the cubic perovskite films followed a cube-on-cube epitaxy and planar defects were observed to occur on the (110) perovskite planes.  相似文献   

4.
Pulsed laser deposition (PLD) was used to grow nanocrystalline SnO2 thin films onto glass substrates. The nanocrystallites and microstructures in SnO2 thin films grown by PLD techniques have been investigated in detail by using X-ray diffraction and high-resolution transmission electron microscopy (HRTEM). The PLD process was carried out at room temperature under a working pressure of about 2×10−6 mbar. Experimental results indicate that thin films are composed of a polycrystalline SnO2 and an amorphous SnO phase. In particular, the presence of such an amorphous SnO phase in the thin films greatly limits their practical use as gas-sensing devices. HRTEM observations revealed that SnO2 nanocrystallites with tetragonal rutile structure embed in an amorphous SnO matrix, which are approximatively equiaxed. These approximatively equiaxed SnO2 nanocrystallites contain a high density of defects, such as twin boundaries and edge dislocations. The grain growth of SnO2 thin films may be discussed in terms of the coalescent particle growth mechanism.  相似文献   

5.
Tungsten oxide thin films, which are cathodic coloration materials that are used in electrochromic devices, were prepared by a chemical growth method and their electrochromic properties were investigated. The thin films of WO3 were deposited onto electrically conducting substrates: fluorine doped tin oxide coated glass (FTO) with sheet resistance of about 10 Ω/cm. Transparent, uniform and strongly adherent thin film samples of WO3 were studied for their structural, morphological, optical and electrochromic properties. The XRD data confirmed the monoclinic crystal structure of WO3 thin films. The direct band gap Eg for the films was found to be 2.95 eV which is good for electrochromic device application. The electrochromism of WO3 thin film was evaluated in 0.5 M LiClO4/propylene carbonate for Li+ intercalation. Electrochromic properties of WO3 thin films were studied with the help of Cyclic Voltammetry (CV), Chronoamperometry (CA) and Chronocoulometry (CC) techniques.  相似文献   

6.
Despite the great success of perovskite photovoltaics in terms of device efficiency and stability using laboratory-scale spin-coating methods, the demand for high-throughput and cost-effective solutions remains unresolved and rarely reported because of the complicated nature of perovskite crystallization. In this work, we propose a stable precursor ink design strategy to control the solvent volatilization and perovskite crystallization to enable the wide speed window printing (0.3 to 18.0 m/min) of phase-pure FAPbI3 perovskite solar cells (pero-SCs) in ambient atmosphere. The FAPbI3 perovskite precursor ink uses volatile acetonitrile (ACN) as the main solvent with DMF and DMSO as coordination additives is beneficial to improve the ink stability, inhibit the coffee rings, and the complicated intermediate FAPbI3 phases, delivering high-quality pin-hole free and phase-pure FAPbI3 perovskite films with large-scale uniformity. Ultimately, small-area FAPbI3 pero-SCs (0.062 cm2) and large-area modules (15.64 cm2) achieved remarkable efficiencies of 24.32 % and 21.90 %, respectively, whereas the PCE of the devices can be maintained at 23.76 % when the printing speed increases to 18.0 m/min. Specifically, the unencapsulated device exhibits superior operational stability with T90>1350 h. This work represents a step towards the scalable, cost-effective manufacturing of perovskite photovoltaics with both high performance and high throughput.  相似文献   

7.
An additive in hybrid perovskite is playing a vital role in the increment of power conversion efficiency (PCE), stability, and reproducibility of perovskite solar cells (PVSCs). Although, single-phase α-FAPbI3 perovskite has an ideal band gap but is continuously transforming to δ–FAPbI3, which is non-photoactive. Here, we controlled the methylammonium (MA) and formamidinium (FA) ratio in the (MAxFA1-x)PbI3 perovskite composition and tuned its morphology with the help of the thioacetamide (TAA) Lewis base additive. The optimum MA:FA ratio and fine-tuning of TAA additive result in a highly crystalline, large grain size and smooth surface of the (MA0.5FA0.5)PbI3 perovskite film. These highly uniform thin films with 850 nm grain size offered a superior interaction between the perovskite material and the electron transport layer (ETL) and a longer lifetime yielding a high PCE. The (MA0.5FA0.5)PbI3+1% TAA-based champion device exhibited the highest PCE of 21.29% for a small area (0.09 cm2) and 18.32% PCE for a large area (1 cm2). The TAA-assisted devices exhibited high stability with >85% retention over 500 h. These results suggest that the (MA0.5FA0.5)PbI3 along with the 1% TAA additive is a promising absorber layer that can produce >21% PCE.  相似文献   

8.
The growth of columnar CeO2, ZnO and ZnO:CeO2−x films on quartz and AA6066 aluminum alloy substrates by economic atmospheric pressure metal-organic chemical vapor deposition (AP-MOCVD) is reported. A novel and efficient combination of metal acetylacetonate precursors as well as mild operating conditions were used in the deposition process. The correlation among crystallinity, surface morphology and optical properties of the as-prepared films was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM) and UV-vis spectroscopy. The synthesized films showed different crystallographic orientations depending on the ZnO and CeO2 lattice mismatch, cerium content and growth rate. The CeO2 films synthesized in this work showed plate-like compact structures as a result of the growth process typical of CVD. Both pure and ZnO:CeO2−x films were obtained with a hexagonal structure and highly preferred orientation with the c-axis perpendicular to both substrates under the optimal deposition conditions. The microstructure was modified from dense, short round columns to round structures with cavities (“rose-flower-like” structures) and the typical ZnO morphology by controlling the cerium doping the film and substrate nature. High optical transmittance (>87%) was observed in the pure ZnO films. As for the ZnO:CeO2−x films, the optical transmission was decreased and the UV absorption increased, which subsequently was affected by an increase in cerium content. This paper assesses the feasibility of using ZnO:CeO2−x thin films as UV-absorbers in industrial applications.  相似文献   

9.
The conventional unstable and expensive hole transporting materials (HTM) has been replaced by cost effective modified carbon hole extraction layer. Herein, we demonstrated a new recipe toward air stable and waterproof modified carbon hole extraction layer for efficient perovskite solar cells (PSCs). The commercial available carbon ink modified with methylammonium lead iodide (MAI) has been used as hole extraction layer for ambipolar perovskite solar cells. The fabricated optimized perovskite solar cell having Glass/FTO/mp-TiO2/MAPbI3-xClx/carbon + MAI/Carbon configuration exhibited η = 13.87% power conversion efficiency (PCE) with open circuit voltage (VOC) 0.997 V, current density (JSC) = 21.41 mAcm?2 and fill factor (FF) 0.65. Furthermore, the air stability were tested at room temperature in open atmosphere. The water proof stability was tested under water flushing. Our results revealed that, although our carbon based devices show lower PCE (η = 13.87%) compared to spiro-MeOTAD HTM (η = 15%), the fabricated PSCs could even retain >90% after water exposure >20 times and ambient air stability more than 160 days. Further the large area device (>1 cm2) device shows 13.04% PCE with Jsc = 21.47 mAcm?2, VOC = 0.996 V and FF = 0.61. We have also demonstrated >13% efficiency for large area device (>1.1 cm2), demonstrating that the developed method is simple, cost effective and promising towards large area device fabrication. The developed methodology based on low cost carbon hole extraction layer will be helpful towards waterproof and air stable perovskite solar cells for large-area devices.  相似文献   

10.
Cesium‐based perovskite nanocrystals (NCs) have outstanding photophysical properties improving the performances of lighting devices. Fundamental studies on excitonic properties and hot‐carrier dynamics in perovskite NCs further suggest that these materials show higher efficiencies compared to the bulk form of perovskites. However, the relaxation rates and pathways of hot‐carriers are still being elucidated. By using ultrafast transient spectroscopy and calculating electronic band structures, we investigated the dependence of halide in Cs‐based perovskite (CsPbX3 with X=Br, I, or their mixtures) NCs on the hot‐carrier relaxation processes. All samples exhibit ultrafast (<0.6 ps) hot‐carrier relaxation dynamics with following order: CsPbBr3 (310 fs)>CsPbBr1.5I1.5 (380 fs)>CsPbI3 NC (580 fs). These result accounts for a reduced light emission efficiency of CsPbI3 NC compared to CsPbBr3 NC.  相似文献   

11.
Chalcogenide perovskites have garnered interest for applications in semiconductor devices due to their excellent predicted optoelectronic properties and stability. However, high synthesis temperatures have historically made these materials incompatible with the creation of photovoltaic devices. Here, we demonstrate the solution processed synthesis of luminescent BaZrS3 and BaHfS3 chalcogenide perovskite films using single-phase molecular precursors at sulfurization temperatures of 575 °C and sulfurization times as short as one hour. These molecular precursor inks were synthesized using known carbon disulfide insertion chemistry to create Group 4 metal dithiocarbamates, and this chemistry was extended to create species, such as barium dithiocarboxylates, that have never been reported before. These findings, with added future research, have the potential to yield fully solution processed thin films of chalcogenide perovskites for various optoelectronic applications.  相似文献   

12.
Ba(Zr,Ti)O3/LaNiO3 layered thin films have been synthesized by chemical solution deposition (CSD) using metal-organic precursor solutions. Ba(Zr,Ti)O3 thin films with smooth surface morphology and excellent dielectric properties were prepared on Pt/TiO x /SiO2/Si substrates by controlling the Zr/Ti ratios in Ba(Zr,Ti)O3. Chemically derived LaNiO3 thin films crystallized into the perovskite single phase and their conductivity was sufficiently high as a thin-film electrode. Ba(Zr,Ti)O3/LaNiO3 layered thin films of single phase perovskite were fabricated on SiO2/Si and fused silica substrates. The dielectric constant of a Ba(Zr0.2Ti0.8)O3 thin film prepared at 700°C on a LaNiO3/fused silica substrate was found to be approximately 830 with a dielectric loss of 5% at 1 kHz and room temperature. Although the Ba(Zr0.2Ti0.8)O3 thin film on the LaNiO3/fused silica substrate showed a smaller dielectric constant than the Ba(Zr0.2Ti0.8)O3 thin film on Pt/TiO x /SiO2/Si, small temperature dependence of dielectric constant was achieved over a wide temperature range. Furthermore, the fabrication of the Ba(Zr,Ti)O3/LaNiO3 films in alternate thin layers similar to a multilayer capacitor structure was performed by the same solution deposition process.  相似文献   

13.
Inorganic cesium lead halide perovskite nanocrystals are candidates for lighting and display materials due to their outstanding optoelectronic properties. However, the dissolution issue of perovskite nanocrystals in polar solvents remains a challenge for practical applications. Herein, we present a newly designed one-step spin-coating strategy to prepare a novel multicolor-tunable CsPbX3 (X=Cl, Br, I) nanocrystal film, where the CsPbX3 precursor solution was formed by dissolving PbO, Cs2CO3, and CH3NH3X into the ionic liquid n-butylammonium butyrate. The as-designed CsPbX3 nanocrystal films show high color purity with a narrow emission width. Also, the blue CsPb(Cl/Br)3 film demonstrates an absolute photoluminescence quantum yields (PLQY) of 15.6 %, which is higher than 11.7 % of green CsPbBr3 and 8.3 % of red CsPb(Br/I)3 film. This study develops an effective approach to preparing CsPbX3 nanocrystal thin films, opening a new avenue to design perovskite nanocrystals-based devices for lighting and display applications.  相似文献   

14.
Thin‐film photovoltaics based on alkylammonium lead iodide perovskite light absorbers have recently emerged as a promising low‐cost solar energy harvesting technology. To date, the perovskite layer in these efficient solar cells has generally been fabricated by either vapor deposition or a two‐step sequential deposition process. We report that flat, uniform thin films of this material can be deposited by a one‐step, solvent‐induced, fast crystallization method involving spin‐coating of a DMF solution of CH3NH3PbI3 followed immediately by exposure to chlorobenzene to induce crystallization. Analysis of the devices and films revealed that the perovskite films consist of large crystalline grains with sizes up to microns. Planar heterojunction solar cells constructed with these solution‐processed thin films yielded an average power conversion efficiency of 13.9±0.7 % and a steady state efficiency of 13 % under standard AM 1.5 conditions.  相似文献   

15.
Barium strontium titanate (Ba0.65Sr0.35TiO3) ferroelectric thin films have been prepared by sol-gel method on Pt/Ti/SiO2/Si substrate. The X-ray diffraction (XRD) pattern indicated that the films were a polycrystalline perovskite structure and the atomic force microscope (AFM) image showed that the crystallite size and the root mean square roughness (RMS) were 90 nm and 3.6 nm, respectively. The X-ray photoelectron spectrum (XPS) images showed that Pt consisting in BST thin films was the metallic state, and the Auger electron spectroscopy (AES) analysed the Pt concentration in different depth profiles of BST thin films. The result displayed that the Pt diffusion in BST thin film is divided into two regions: near the BST/Pt interface, the diffusion type was volume diffusion, and far from the interface correspondingly, the diffusion type became grain boundary diffusion. In this paper, the previous researcher’s result was used to verify our conclusion.  相似文献   

16.
Double-scale composite lead zirconate titanate Pb(Zr0.52Ti0.48)O3 (PZT) thin films of 360 nm thickness were prepared by a modified composite sol-gel method. PZT films were deposited from both the pure sol and the composite suspension on Pt/Al2O3 substrates by the spin-coating method and were sintered at 650°C. The composite suspension formed after ultrasonic mixing of the PZT nanopowder and PZT sol at the powder/sol mass concentration 0.5 g mL−1. PZT nanopowder (≈ 40–70 nm) was prepared using the conventional sol-gel method and calcination at 500°C. Pure PZT sol was prepared by a modified sol-gel method using a propan-1-ol/propane-1,2-diol mixture as a stabilizing solution. X-ray diffraction (XRD) analysis indicated that the thin films possess a single perovskite phase after their sintering at 650°C. The results of scanning electron microscope (SEM), energy-dispersive X-ray (EDX), atomic force microscopy (AFM), and transmission electron microscopy (TEM) analyses confirmed that the roughness of double-scale composite PZT films (≈ 17 nm) was significantly lower than that of PZT films prepared from pure sol (≈ 40 nm). The composite film consisted of nanosized PZT powder uniformly dispersed in the PZT matrix. In the surface micrograph of the film derived from sol, large round perovskite particles (≈ 100 nm) composed of small spherical individual nanoparticles (≈ 60 nm) were observed. The composite PZT film had a higher crystallinity degree and smoother surface morphology with necklace clusters of nanopowder particles in the sol-gel matrix compared to the pure PZT film. Microstructure of the composite PZT film can be characterized by a bimodal particle size distribution containing spherical perovskite particles from added PZT nanopowder and round perovskite particles from the sol-matrix, (≈ 30–50 nm and ≈ 100–120 nm), respectively. Effect of the PZT film preparation method on the morphology of pure and composite PZT thin films deposited on Pt/Al2O3 substrates was evaluated.  相似文献   

17.
金属氧化物薄膜如HfO2(被称为高k电介质)是现代微电子器件的关键组件,广泛用于计算机(平板电脑,笔记本电脑和台式机)、智能电话、智能电视、汽车和医疗设备中。具有大介电常数(k)的金属氧化物已经取代了介电常数小的SiO2k=3.9),从而使得微电子元件进一步小型化。过渡金属化合物在化学气相沉积(CVD)和原子层沉积(ALD)中被广泛用作前体,通过与O2、H2O或O3的反应生成金属氧化物薄膜。微电子金属氧化物膜是纳米材料最广泛应用的一个领域。本文概观该领域的最新进展,包括我们对d0过渡金属配合物与O2反应的研究。  相似文献   

18.
金属氧化物薄膜如HfO2(被称为高k电介质)是现代微电子器件的关键组件,广泛用于计算机(平板电脑,笔记本电脑和台式机)、智能电话、智能电视、汽车和医疗设备中。具有大介电常数(k)的金属氧化物已经取代了介电常数小的SiO2k=3.9),从而使得微电子元件进一步小型化。过渡金属化合物在化学气相沉积(CVD)和原子层沉积(ALD)中被广泛用作前体,通过与O2、H2O或O3的反应生成金属氧化物薄膜。微电子金属氧化物膜是纳米材料最广泛应用的一个领域。本文概观该领域的最新进展,包括我们对d0过渡金属配合物与O2反应的研究。  相似文献   

19.
A new sol-gel system using ethylene glycol was developed for the fabrication of PZT thin films with compositions near the morphotropic phase boundary Pb(Zr0.52Ti0.48)O3. Ethylene glycol was used as both a chelating agent and a solvent to replace the highly toxic methoxyethanol used in previous formulations. Thin films were deposited by spin coating the solutions onto platinized silicon substrates. Films were completely crystallized by about 600°C and contained the ferroelectric perovskite phase. A dielectric constant of about 750–800 at 1 KHz was obtained for thin films of 0.3 µm thickness. The hysteresis measurements revealed a remanent polarization of 15 mC/cm2 with a coercive field of 60 kV/cm.  相似文献   

20.
New solar cells with Ag/C60/MAPbI3/Cu2ZnSnSe4 (CZTSe)/Mo/FTO multilayered structures on glass substrates have been prepared and investigated in this study. The electron-transport layer, active photovoltaic layer, and hole-transport layer were made of C60, CH3NH3PbI3 (MAPbI3) perovskite, and CZTSe, respectively. The CZTSe hole-transport layers were deposited by magnetic sputtering, with the various thermal annealing temperatures at 300 °C, 400 °C, and 500 °C, and the film thickness was also varied at 50~300 nm The active photovoltaic MAPbI3 films were prepared using a two-step spin-coating method on the CZTSe hole-transport layers. It has been revealed that the crystalline structure and domain size of the MAPbI3 perovskite films could be substantially improved. Finally, n-type C60 was vacuum-evaporated to be the electronic transport layer. The 50 nm C60 thin film, in conjunction with 100 nm Ag electrode layer, provided adequate electron current transport in the multilayered structures. The solar cell current density–voltage characteristics were evaluated and compared with the thin-film microstructures. The photo-electronic power-conversion efficiency could be improved to 14.2% when the annealing temperature was 500 °C and the film thickness was 200 nm. The thin-film solar cell characteristics of open-circuit voltage, short-circuit current density, fill factor, series-resistance, and Pmax were found to be 1.07 V, 19.69 mA/cm2, 67.39%, 18.5 Ω and 1.42 mW, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号