首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A new compound Ce12Pt7In was synthesized and its crystal structure at 300 K has been determined from single crystal X-ray data. It is tetragonal, space group I4/mcm, Z=4, with the lattice parameters: a=12.102(1) Å and c=14.542(2) Å, wR2=0.1102, 842 F2 values, 33 variable parameters. The structure of Ce12Pt7In is a fully ordered ternary derivative of the Gd3Ga2-type. Isostructural compounds has been found to form with Pr (a=11.976(1) Å, c=14.478(2) Å), Nd (a=11.901(1) Å, c=14.471(2) Å), Gd (a=11.601(3) Å, c=14.472(4) Å), and Ho (a=11.369(1) Å, c=14.462(2) Å). Magnetic properties of Ce12Pt7In, Pr12Pt7In and Nd12Pt7In were studied down to 1.7 K. All three ternaries order magnetically at low temperatures with complex spin arrangements. The electrical resistivity of Ce12Pt7In and Nd12Pt7In is characteristic of rare-earth intermetallics.  相似文献   

2.
Three novel metal polyphosphides, α-SrP3, BaP8, and LaP5, were prepared in BN crucibles by the reaction of the respective stoichiometric mixtures under a high pressure of 3 GPa at 950-1000°C. Their crystal structures were determined from single-crystal X-ray data (α-SrP3: space group C2/m, a=9.199(6) Å, b=7.288(3) Å, c=5.690(3) Å, β=113.45(4)°, Z=4, R1/wR2=0.0684/0.1180 for 471 observed reflections and 22 variables; BaP8: space group P−1, a=6.762(2) Å, b=7.233(2) Å, c=8.567(2) Å, α=86.32(2)°, β=84.31(2)°, γ=70.40(2)°, Z=2, R1/wR2=0.0476/0.1255 for 2702 observed reflections and 82 variables; LaP5: space group P21/m, a=4.885(1) Å, b=9.673(3) Å, c=5.577(2) Å, β=105.32(2)°, Z=2, R1/wR2=0.0391/0.1034 for 1272 observed reflections and 31 variables). α-SrP3 is isostructural with SrAs3 and the crystal structure consists of two-dimensional puckered polyanionic layers 2[P3]2− that stack along the c-axis yielding channels occupied by Sr2+ counterions. BaP8 crystallizes in a new structure type which contains a three-dimensional infinite polyanionic framework 3[P3]2−, with large channels hosting the barium cations. LaP5 is a layered compound containing 2[P5]3− polyanionic layers separated by La3+ ions. All three compounds exhibit expected diamagnetic behaviors.  相似文献   

3.
The first organically templated one-dimensional lanthanum sulfate [C4N3H16][La(SO4)3]·H2O has been prepared employing hydrothermal methods in the presence of diethylenetriamine (DETA). The structure was determined by single-crystal X-ray diffraction (XRD). The title compound crystallizes in the triclinic system, space group P-1 (No.2) with cell parameters M=551.30, a=8.2773(7) Å, b=9.5660(6) Å, c=10.4363(6) Å, α=105.661(2)°, β=102.849(3)°, γ=104.376(3)°, V=732.72(9) Å3, Z=2, R=0.0285, wR=0.0778. The structure consists of infinite linear chains. The chains are held together by hydrogen bond interactions involving the hydrogens of the amine and the framework oxygens. The as-synthesized product is characterized by powder XRD, inductive couple plasma analysis and thermogravimetric analysis.  相似文献   

4.
Three new compounds Ca(HF2)2, Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) were obtained in the system metal(II) fluoride and anhydrous HF (aHF) acidified with excessive PF5. The obtained polymeric solids are slightly soluble in aHF and they crystallize out of their aHF solutions. Ca(HF2)2 was prepared by simply dissolving CaF2 in a neutral aHF. It represents the second known compound with homoleptic HF environment of the central atom besides Ba(H3F4)2. The compounds Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) represent two additional examples of the formation of a polymeric zigzag ladder or ribbon composed of metal cation and fluoride anion (MF+)n besides PbF(AsF6), the first isolated compound with such zigzag ladder. The obtained new compounds were characterized by X-ray single crystal diffraction method and partly by Raman spectroscopy. Ba4F4(HF2)(PF6)3 crystallizes in a triclinic space group P1¯ with a=4.5870(2) Å, b=8.8327(3) Å, c=11.2489(3) Å, α=67.758(9)°, β=84.722(12), γ=78.283(12)°, V=413.00(3) Å3 at 200 K, Z=1 and R=0.0588. Pb2F2(HF2)(PF6) at 200 K: space group P1¯, a=4.5722(19) Å, b=4.763(2) Å, c=8.818(4) Å, α=86.967(10)°, β=76.774(10)°, γ=83.230(12)°, V=185.55(14) Å3, Z=1 and R=0.0937. Pb2F2(HF2)(PF6) at 293 K: space group P1¯, a=4.586(2) Å, b=4.781(3) Å, c=8.831(5) Å, α=87.106(13)°, β=76.830(13)°, γ=83.531(11)°, V=187.27(18) Å3, Z=1 and R=0.072. Ca(HF2)2 crystallizes in an orthorhombic Fddd space group with a=5.5709(6) Å, b=10.1111(9) Å, c=10.5945(10) Å, V=596.77(10) Å3 at 200 K, Z=8 and R=0.028.  相似文献   

5.
Sr4AlNbO8 was synthesized at 1500 °C in air. The crystal structure was initially determined from powder X-ray diffraction data, and later refined with combined X-ray and neutron diffraction data (P21/c; a=7.17592(2) Å, b=5.80261(2) Å, c=19.7408(1) Å; β=97.5470(1)°, V=814.869(3) Å3, Z=4, Rp/Rwp=10.04%/13.18% for X-ray data, 4.40%/5.67% for neutron data, and 7.71%/10.74% in total with χ2 of 3.76, 23 °C). The crystal structure is a new structure type and may be described as a three-dimensional polyhedral network resulting from the corner-sharing of NbO6 and Sr1O6 octahedra and AlO4 tetrahedra. Also, the other strontium atoms (Sr2, Sr3, and Sr4) occupy the larger cavities surrounded by oxygen atoms to form nine, eight, and 11 coordination, respectively. Considering that Sr, Al, and Nb atoms are crystallographically distinct in terms of interatomic distances and polyhedral coordination, Sr4AlNbO8 can be regarded as a stoichiometric compound.  相似文献   

6.
The isotypic oxonitridosilicate halides Ce10[Si10O9N17]Br, Nd10[Si10O9N17]Br and Nd10[Si10O9N17]Cl were obtained by the reaction of the respective lanthanide metals, their oxides and halides with “Si(NH)2” in a radiofrequency furnace at temperatures around 1800 °C, using CsBr, resp. CsCl, as a flux. The crystal structures were determined by single-crystal X-ray diffraction (Pbam, no. 55, Z=2; Ce/Br: a=10.6117(9) Å, b=11.2319(10) Å, c=11.688(8) Å, R1=0.0356; Nd/Br: a=10.523(2) Å, b=11.101(2) Å, c=11.546(2) Å, R1=0.0239; Nd/Cl: a=10.534(2) Å, b=11.109(2) Å, c=11.543(2) Å, R1=0.0253) and represent a new layered structure type. The structure refinements were performed utilizing an O/N-distribution model according to Paulings rules, i.e. nitrogen was positioned on all bridging sites and mixed O/N-occupation was assumed on the terminal sites resulting in charge neutrality of the compounds. The layers consist of condensed [SiN2(O/N)2] and [SiN3(O/N)] tetrahedra of Q2 and Q3 type. The chemical composition of the compounds was derived from chemical analyses for Nd10[Si10O9N17]Br and electron probe micro analyses (EPMA) for all three compounds. The results of IR spectroscopic investigations are reported.  相似文献   

7.
The crystal structures of new quaternary compounds La3AgSnSe7 (space group P63, Pearson symbol hP24, a=1.0805(4) nm, c=0.6245(1) nm, R1=0.0315), La3Ag0.82SnS7 (space group P63, Pearson symbol hP23.64, a=1.0399(1) nm, c=0.6016(1) nm, R1=0.0149) and Ce3Ag0.81SnS7 (space group P63, Pearson symbol hP23.62, a=1.0300(1) nm, c=0.6002(1) nm, R1=0.0151) were determined by means of X-ray single crystal diffraction. Structural investigations of the R3Ag1−δSnS7 (R=La, Ce; δ=0.18-0.19(1)) compounds at 450 and 530 K were performed. Low temperature data (12 K) for Ce3Ag0.81SnS7 were also collected. The nearest neighbours of the La(Ce), Ag and Sn atoms are exclusively Se(S) atoms. The latter form distorted trigonal prisms around the La(Ce) atoms, and distorted tetrahedrons around the Sn atoms. The Ag (Ag1) atoms have triangular surroundings: they are located very close to the planes built of three Se(S) atoms. The Ag2 atoms in the structures of the La3Ag0.82SnS7, Ce3Ag0.81SnS7 compounds are located practically in the centres of trigonal antiprisms. The pseudo-potentials determined through the Ag atoms show relatively low barrier between two nearest positions which decreases when temperature rises.  相似文献   

8.
Li2Rh3B2 has been synthesized at 1000 °C from a stoichiometric mix of rhodium and boron and an excess of lithium. Li2Rh3B2 crystallizes in the orthorhombic space group Pbam (no. 55, Z=2) with room temperature lattice constants a=5.7712(1) Å, b=9.4377(2) Å, c=2.8301(1) Å and cell volume 154.149(6) Å3. The structure was solved from single crystal X-ray diffraction yielding the final R indices (all data) R1=2.8% and wR2=4.7%. The structure is a distortion of the CeCo3B2 structure type, containing a network of Rh6B trigonal prisms and short Li-Li contacts of 2.28(2) Å. Li2Rh3B2 is a diamagnetic metal with a room temperature resistivity of 19 μΩ cm, as determined by magnetic susceptibility and single crystal transport measurements. The measured diamagnetism and electronic structure calculations show that Li2Rh3B2 contains rhodium in a d10 configuration.  相似文献   

9.
A novel three-dimensional inorganic bimetallic compound Cu[Mo3O10]·H2O 1 has been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Compound 1 crystallizes in the orthorhombic system, space group Pnma, a=8.6085(17) Å, b=7.5822(15) Å, c=13.690(3) Å, V=893.6(3) Å3, Z=4, λ(MoKα) = 0.71073 Å (R(F)=0.0357 for 1101 reflections). The structure of compound 1 is based on [{Mo3O10}2−] isopolyoxomolybdate chains bonded together with CuO4 tetrahedra into a three-dimensional inorganic open framework. Three types of Mo-Cu layers and one-dimensional tunnels are observed in the title compound.  相似文献   

10.
The compound (NpO2)2(SO4)(H2O)4 was synthesized by evaporation of a Np5+ sulfate solution. The crystal structure was determined using single crystal X-ray diffraction and refined to an R1=0.0310. (NpO2)2(SO4)(H2O)4 crystallizes in triclinic space group P-1, a=8.1102(7) Å, b=8.7506(7) Å, c=16.234(1) Å, α=90.242(2)°, β=92.855(2)°, γ=113.067(2)°, V=1058.3(2) Å3, and Z=2. The structure contains neptunyl pentagonal bipyramids that share vertices through cation-cation interactions to form a sheet or cationic net. The sheet is decorated on each side by vertex sharing with sulfate tetrahedra, and adjacent sheets are linked together through hydrogen bonding. A graphical representation of (NpO2)2(SO4)(H2O)4 was constructed to facilitate the structural comparison to similar Np5+ compounds. The prevalence of the cationic nets in neptunyl sulfate compounds related to the overall stability of the structure is also discussed.  相似文献   

11.
Single crystals of [H3dien]·(FeF6)·H2O (I) and [H3dien]·(CrF6)·H2O (II) are obtained by solvothermal synthesis under microwave heating. I is orthorhombic (Pna21) with a=11.530(2) Å, b=6.6446(8) Å, c=13.787(3) Å, V=1056.3(2) Å3 and Z=4. II is monoclinic (P21/c) with a=13.706(1) Å, b=6.7606(6) Å, c=11.3181(9) Å, β=99.38(1)°, V=1034.7(1) Å3 and Z=4. The structure determinations, performed from single crystal X-ray diffraction data, lead to the R1/wR2 reliability factors 0.028/0.066 for I and 0.035/0.102 for II. The structures of I and II are built up from isolated FeF6 or CrF6 octahedra, water molecules and triprotonated amines. In both structures, each octahedron is connected by hydrogen bonds to six organic cations and two water molecules. The iron-based compound is also characterized by 57Fe Mössbauer spectrometry: the hyperfine structure confirms the presence of Fe3+ in octahedral coordination and reveals the existence of paramagnetic spin fluctuations.  相似文献   

12.
A new open-framework iron (III) phosphite |C4N3H14|[Fe3(HPO3)4F2(H2O)2] has been solvothermally synthesized by using diethylenetriamine (DETA) as the structure-directing agent. Single-crystal X-ray diffraction analysis reveals that the compound crystallizes in the monoclinic space group C2/c having unit cell parameters a=12.877(3) Å, b=12.170(2) Å, c=12.159(2) Å, β=93.99(3)°, V=1900.9(7) Å3, and Z=4 with R1=0.0447, wR2=0.0958. The complex structure consists of HPO3 pseudo-tetrahedra and {Fe3O14F2} trimer building units. The assembly of these building units generates 3D inorganic framework with intersecting 6-, 8-, and 10-ring channels. The DETA cations are located in the 10-ring channels linked by hydrogen bonds. The Mössbauer spectrum shows that there exhibit two crystallographically independent iron (III) atoms. And the magnetic investigation shows the presence of antiferromagnetic interactions. Further characterization of the title compound was performed using X-ray powder diffraction (XRD), infrared (IR) spectra, thermal gravimetric analyses (TGA), inductively coupled plasma (ICP) and elemental analyses.  相似文献   

13.
A new compound, Li4CaB2O6, has been synthesized by solid-state reaction and its structure has been determined from powder X-ray diffraction data by direct methods. The refinement was carried out using the Rietveld methods and the final refinement converged with Rp=10.4%, Rwp=14.2%, Rexp=4.97%. This compound belongs to the orthorhombic space group Pnnm, with lattice parameters a=9.24036(9) Å, b=8.09482(7) Å, and c=3.48162(4) Å. Fundamental building units are isolated [BO3]3− anionic groups, which are all parallel to the a-b plane stacked along the c-axis. The Ca atoms are six-coordinated by the O atoms to form octahedral coordination polyhedra, which are joined together through edges along the c-axis, forming infinitely long three-dimensional chains. The Li atoms have a four-fold and a five-fold coordination with O atoms that lead to complex Li-O-Li chains that also extend along the c-axis. The infrared spectrum of Li4CaB2O6 was also studied, which is consistent with the crystallographic study.  相似文献   

14.
Colorless crystals of CsTh(MoO4)2Cl and Na4Th(WO4)4 have been synthesized at 993 K by the solid-state reactions of ThO2, MoO3, CsCl, and ThCl4 with Na2WO4. Both compounds have been characterized by the single-crystal X-ray diffraction. The structure of CsTh(MoO4)2Cl is orthorhombic, consisting of two adjacent [Th(MoO4)2] layers separated by an ionic CsCl sublattice. It can be considered as an insertion compound of Th(MoO4)2 and reformulated as Th(MoO4)2·CsCl. The Th atom coordinates to seven monodentate MoO4 tetrahedra and one Cl atom in a highly distorted square antiprism. Na4Th(WO4)4 adopts a scheelite superlattice structure. The three-dimensional framework of Na4Th(WO4)4 is constructed from corner-sharing ThO8 square antiprisms and WO4 tetrahedra. The space within the channels is filled by six-coordinate Na ions. Crystal data: CsTh(MoO4)2Cl, monoclinic, P21/c, Z=4, a=10.170(1) Å, b=10.030(1) Å, c=9.649(1) Å, β=95.671(2)°, V=979.5(2) Å3, R(F)=2.65% for I>2σ(I); Na4Th(WO4)4, tetragonal, I41/a, Z=4, a=11.437(1) Å, c=11.833(2) Å, V=1547.7(4) Å3, R(F)=3.02% for I>2σ(I).  相似文献   

15.
The organo-templated iron(III) borophosphate (C3H12N2)FeIII 6(H2O)4[B4P8O32(OH)8] was prepared under mild hydrothermal conditions (at 443 K) and the crystal structure was determined from single crystal X-ray data at 295 K (monoclinic, P21/c (No. 14), a=5.014(2) Å, b=9.309(2) Å, c=20.923(7) Å, β=110.29(2)°, V=915.9(5) Å3, Z=2, R1=0.049, wR2=0.107 for all data, 2234 observed reflections with I>2σ(I)). The title compound contains a complex inorganic framework of borophosphate trimers [BP2O8(OH)2]5− together with FeO4(OH)(H2O)- and FeO4(OH)2-octahedra forming channels with ten-membered ring apertures in which the diaminopropane cations are located. The magnetization measurements confirm the Fe(III)-state and show an antiferromagnetic ordering at TN≈14.0(1) K.  相似文献   

16.
The first charge transfer salt based on non- dimerized [BEDO-TTF]+ monocationic radical (BEDO-TTF=bis(ethylenedioxy)tetrathiafulvalene) associated with [Mo6Br14]2− cluster anions has been synthesized by conventional electro-oxidation and characterized by single crystal X-ray diffraction, UV-VIS-NIR absorption and magnetic susceptibility measurements. (BEDO-TTF)2Mo6Br14(PhCN)4 crystallizes in the monoclinic system, space group P21/n, a=10.414(4) Å, b=21.711(7) Å, c=15.958(5) Å, β=93.65(3)°, V=3601(2) Å3, Z=2, R1=0.0578, wR2=0.0731. The structure of this hybrid compound is built up from a [BEDO-TTF]+ and PhCN (benzonitrile) organic framework in which are hosted the [Mo6Br14]2− inorganic cluster units. It results in non- dimerized [BEDO-TTF]+ cations that exhibit a paramagnetic behavior characteristic of one unpaired electron.  相似文献   

17.
A novel three-dimensional inorganic-organic hybrid compound, Mn(H2O)[HO3PCH2NH(CH2CO2)2] from a hydrothermal reaction of Mn (II) ion with N-(phosphonomethyl)iminodiacetic acid (H4PMIDA) was reported. The compound crystallizes in the monoclinic P21/n with cell dimensions of a=5.215(5) Å, b=14.111(15) Å, c=12.727(12) Å, β=93.646(16)°, V=934.6(16) Å3 and Z=4. In this structure each Mn atom is six-coordinated with the carboxylic groups and phosphonic groups to form layers along the bc plane. These layers are further connected with the organic moieties of H2PMIDA, resulting in a complicated three-dimensional network structure. Thermogravimetric analysis, IR spectrum and magnetic susceptibility of this compound are given.  相似文献   

18.
Employing 1-(2-Aminoethyl) piperazine as a template, a new organically templated layered zinc phosphate-phosphite (C6H17N3)[Zn4(PO4)2(HPO3)2] has been prepared hydrothermally. Single-crystal X-ray diffraction analysis shows that it crystallizes in the monoclinic space group Cc with a=5.3272(11) Å, b=17.146(3) Å, c=22.071(4) Å, β=94.58(3)°, V=2009.5(7) Å3, Z=4, R1=0.0201 (I>2σ(I)) and wR2=0.0812 (all data). The inorganic network is based on strictly alternating ZnO4 tetrahedral units and P-centered units including PO4 tetrahedra and HPO3 pseudo-pyramids forming a double layered structure that contains columns of double six-membered rings. The diprotonated 1-(2-Aminoethyl) piperazine molecules reside in the interlayer region and interact with the inorganic network through H-bonds.  相似文献   

19.
Yb3Cu6Sn5, Yb5Cu11Sn8 and Yb3Cu8Sn4 compounds were prepared in sealed Ta crucibles by induction melting and subsequent annealing. The crystal structures of Yb3Cu6Sn5 and Yb5Cu11Sn8 were determined from single crystal diffractometer data: Yb3Cu6Sn5, isotypic with Dy3Co6Sn5, orthorhombic, Immm, oI28, a=4.365(1) Å, b=9.834(3) Å, c=12.827(3) Å, Z=2, R=0.019, 490 independent reflections, 28 parameters; Yb5Cu11Sn8 with its own structure, orthorhombic, Pmmn, oP48, a=4.4267(6) Å, b=22.657(8) Å, c=9.321(4) Å, Z=2, R=0.047, 1553 independent reflections, 78 parameters. Both compounds belong to the BaAl4-derived defective structures, and are closely related to Ce3Pd6Sb5 (oP28, Pmmn). The crystal structure of Yb3Cu8Sn4, isotypic with Nd3Co8Sn4, was refined from powder data by the Rietveld method: hexagonal, P63mc, hP30, a=9.080(1) Å, c=7.685(1) Å, Z=2, Rwp=0.040. It is an ordered substitution derivative of the BaLi4 type (hP30, P63/mmc). All compounds show strong Cu-Sn bonds with a length reaching 2.553(3) Å in Yb5Cu11Sn8.  相似文献   

20.
The solid-state reactions of UO3 and WO3 with M2CO3 (M=Na, K, Rb) at 650°C for 5 days result, accordingly the starting stoichiometry, in the formation of M2(UO2)(W2O8) (M=Na (1), K (2)), M2(UO2)2(WO5)O (M=K (3), Rb (4)), and Na10(UO2)8(W5O20)O8 (5). The crystal structures of compounds 2, 3, 4, and 5 have been determined by single-crystal X-ray diffraction using Mo(Kα) radiation and a charge-coupled device detector. The crystal structures were solved by direct methods and Fourier difference techniques, and refined by a least-squares method on the basis of F2 for all unique reflections. For (1), unit-cell parameters were determined from powder X-ray diffraction data. Crystallographic data: 1, monoclinic, a=12.736(4) Å, b=7.531(3) Å, c=8.493(3) Å, β=93.96(2)°, ρcal=6.62(2) g/cm3, ρmes=6.64(1) g/cm3, Z=4; 2, orthorhombic, space group Pmcn, a=7.5884(16) Å, b=8.6157(18) Å, c=13.946(3) Å, ρcal=6.15(2) g/cm3, ρmes=6.22(1) g/cm3, Z=8, R1=0.029 for 80 parameters with 1069 independent reflections; 3, monoclinic, space group P21/n, a=8.083(4) Å, b=28.724(5) Å, c=9.012(4) Å, β=102.14(1)°, ρcal=5.83(2) g/cm3, ρmes=5.90(2) g/cm3, Z=8, R1=0.037 for 171 parameters with 1471 reflections; 4, monoclinic, space group P21/n, a=8.234(1) Å, b=28.740(3) Å, c=9.378(1) Å, β=104.59(1)°, ρcal=6.13(2) g/cm3,  g/cm3, Z=8, R1=0.037 for 171 parameters with 1452 reflections; 5, monoclinic, space group C2/c, a=24.359(5) Å, b=23.506(5) Å, c=6.8068(14) Å, β=94.85(3)°, ρcal=6.42(2) g/cm3,  g/cm3, Z=8, R1=0.036 for 306 parameters with 5190 independent reflections. The crystal structure of 2 contains linear one-dimensional chains formed from edge-sharing UO7 pentagonal bipyramids connected by two octahedra wide (W2O8) ribbons formed from two edge-sharing WO6 octahedra connected together by corners. This arrangement leads to [UW2O10]2− corrugated layers parallel to (001). Owing to the unit-cell parameters, compound 1 probably contains similar sheets parallel to (100). Compounds 3 and 4 are isostructural and the structure consists of bi-dimensional networks built from the edge- and corner-sharing UO7 pentagonal bipyramids. This arrangement creates square sites occupied by W atoms, a fifth oxygen atom completes the coordination of W atoms to form WO5 distorted square pyramids. The interspaces between the resulting [U2WO10]2− layers parallel to plane are occupied by K or Rb atoms. The crystal structure of compound 5 is particularly original. It is based upon layers formed from UO7 pentagonal bipyramids and two edge-shared octahedra units, W2O10, by the sharing of edges and corners. Two successive layers stacked along the [100] direction are pillared by WO4 tetrahedra resulting in sheets of double layers. The sheets are separated by Na+ ions. The other Na+ ions occupy the rectangular tunnels created within the sheets. In fact complex anions W5O2010− are built by the sharing of the four corners of a WO4 tetrahedron with two W2O10 dimmers, so, the formula of compound 5 can be written Na10(UO2)8(W5O20)O8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号