首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 429 毫秒
1.
The ternary rare-earth zinc arsenides REZn1−xAs2 (RE=La-Nd, Sm) were prepared by reaction of the elements at 800 °C. Single-crystal and powder X-ray diffraction analysis revealed a defect SrZnBi2-type average structure for the La member (Pearson symbol tI16, space group I4/mmm, Z=4; a=4.0770(9) Å, c=20.533(5) Å), in contrast to defect HfCuSi2-type average structures for the remaining RE members (Pearson symbol tP8, space group P4/nmm, Z=2; a=4.0298(5)-3.9520(4) Å, c=10.222(1)-10.099(1) Å in the progression from Ce to Sm). The homogeneity range is not appreciable (estimated to be narrower than 0.6<1−x<0.7 in SmZn1−xAs2) and the formula REZn0.67As2 likely represents the Zn-rich phase boundary. The Ce-Nd members are Curie-Weiss paramagnets. LaZn0.67As2 shows activated behavior in its electrical resistivity, whereas SmZn0.67As2 exhibits anomalies in its temperature dependence of the electrical resistivity.  相似文献   

2.
Investigations on phase relationships and crystal structures have been conducted on several ternary rare-earth titanium antimonide systems. The isothermal cross-sections of the ternary RE-Ti-Sb systems containing a representative early (RE=La) and late rare-earth element (RE=Er) have been constructed at 800 °C. In the La-Ti-Sb system, the previously known compound La3TiSb5 was confirmed and the new compound La2Ti7Sb12 (own type, Cmmm, Z=2, a=10.5446(10) Å, b=20.768(2) Å, and c=4.4344(4) Å) was discovered. In the Er-Ti-Sb system, no ternary compounds were found. The structure of La2Ti7Sb12 consists of a complex arrangement of TiSb6 octahedra and disordered fragments of homoatomic Sb assemblies, generating a three-dimensional framework in which La atoms reside. Other early rare-earth elements (RE=Ce, Pr, Nd) can be substituted in this structure type. Attempts to prepare crystals in these systems through use of a tin flux resulted in the discovery of a new Sn-containing pseudoternary phase RETi3(SnxSb1−x)4 for RE=Nd, Sm (own type, Fmmm, Z=8; a=5.7806(4) Å, b=10.0846(7) Å, and c=24.2260(16) Å for NdTi3(Sn0.1Sb0.9)4; a=5.7590(4) Å, b=10.0686(6) Å, and c=24.1167(14) Å for SmTi3(Sn0.1Sb0.9)4). Its structure consists of double-layer slabs of Ti-centred octahedra stacked alternately with nets of the RE atoms; the Ti atoms are arranged in kagome nets.  相似文献   

3.
Four new isostructural rare earth manganese stannides, namely RE3MnSn5−x (x=0.16(6), 0.29(1) for RE=Tm, x=0.05(8), 0.21(3) for RE=Lu), have been obtained by reacting the mixture of corresponding pure elements at high temperature. Single-crystal X-ray diffraction studies revealed that they crystallized in the orthorhombic space group Pnma (No. 62) with cell parameters of a=18.384(9)-18.495(6) Å, b=6.003(3)-6.062(2) Å, c=14.898(8)-14.976(4) Å, V=1644.3(14)-1679.0(9) Å3 and Z=8. Their structures belong to the Hf3Cr2Si4 type and feature a 3D framework composed of 1D [Mn2Sn7] chains interconnected by [Sn3] double chains via Sn-Sn bonds, forming 1D large channels based on [Mn4Sn16] 20-membered rings along the b-axis, which are occupied by the rare earth atoms. Electronic structure calculations based on density functional theory (DFT) for idealized “RE3MnSn5” model indicate that these compounds are metallic, which are in accordance with the results from temperature-dependent resistivity measurements.  相似文献   

4.
The ternary rare-earth zinc antimonides REZn1-xSb2 (RE=La, Ce, Pr, Nd, Sm, Gd, Tb) were prepared by heating at 1050 °C followed by annealing at 600 °C. For all members, single-crystal X-ray diffraction studies indicated that the Zn deficiency is essentially fixed, corresponding to the formula REZn0.6Sb2, with no appreciable homogeneity range. These compounds adopt the HfCuSi2-type structure (Pearson symbol tP8, space group P4/nmm, Z=2). Single-crystal electrical resistivity measurements confirmed the occurrence of an abrupt resistivity decrease near 4 K for RE=Ce, and a less pronounced one for RE=La, Pr, and Gd. Except for the ferromagnetic Ce (Tc=2.5 K) and antiferromagnetic Tb (TN=10 K) members, all remaining compounds exhibit no long-range magnetic ordering down to 2 K, instead showing temperature-independent (RE=La), van Vleck (RE=Sm), or Curie-Weiss paramagnetism (RE=Pr, Nd, Gd).  相似文献   

5.
The quaternary rare-earth phosphides RECuZnP2 (RE=Pr, Nd, Gd-Tm, Lu) have been prepared by reaction of the elements at 900 °C, completing this versatile series which forms for nearly all RE metals. They adopt the trigonal CaAl2Si2-type structure (Pearson symbol hP5, space group P3?m1, Z=1), as confirmed by single-crystal X-ray diffraction analysis on ErCuZnP2 and powder X-ray diffraction analysis on the remaining members. The Cu and Zn atoms are assumed to be disordered over the single transition-metal site. Band structure calculations on a hypothetically ordered YCuZnP2 model suggest a semimetal, with a zero band gap between the valence and conduction bands. This electronic structure is supported by XPS valence band spectra for RECuZnP2 (RE=Gd-Er), in which the intensity drops off smoothly at the Fermi edge. The absence of a band gap permits the electron count to deviate from the precise value of 16 e per formula unit, as demonstrated by the formation of a solid solution in GdCuxZn2−xP2 (1.0≤x≤1.3), while still retaining the CaAl2Si2-type structure. Because the Cu 2p XPS spectra indicate that the Cu atoms are always monovalent, the substitution of Cu for Zn leads to a decrease in electron count and a lowering of the Fermi level in the valence band. The magnetic susceptibility of RECuZnP2 (RE=Gd-Er), which obeys the Curie-Weiss law, confirms the presence of trivalent RE atoms.  相似文献   

6.
Application of high-pressure high-temperature conditions (3.5 GPa at 1673 K for 5 h) to mixtures of the elements (RE:B:S=1:3:6) yielded crystalline samples of the isotypic rare earth-thioborate-sulfides RE9[BS3]2[BS4]3S3, (RE=Dy-Lu), which crystallize in space group P63 (Z=2/3) and adopt the Ce6Al3.33S14 structure type. The crystal structures were refined from X-ray powder diffraction data by applying the Rietveld method. Dy: a=9.4044(2) Å, c=5.8855(3) Å; Ho: a=9.3703(1) Å, c=5.8826(1) Å; Er: a=9.3279(12) Å, c=5.8793(8) Å; Tm: a=9.2869(3) Å, c=5.8781(3) Å; Yb: a=9.2514(5) Å, c=5.8805(6) Å; Lu: a=9.2162(3) Å, c=5.8911(3) Å. The crystal structure is characterized by the presence of two isolated complex ions [BS3]3- and [BS4]5- as well as [□(S2-)3] units.  相似文献   

7.
The RE3Ga9Ge compounds (RE=Y, Ce, Sm, Gd and Yb) were synthesized at 850°C in quantitative yield from reactions containing excess liquid Ga. The orthorhombic crystal structure is characterized by a unique three-dimensional open Ga framework with parallel straight tunnels. In the tunnels, inserted are arrays of the RE atoms together with interpenetrated monoatomic RE-Ga-Ge planes. A complex disordered arrangement of the RE and Ga atoms is observed in the monoatomic plane. Depending on the extent of disorder, the crystal structure could be presented either in a sub-cell (no ordering) or in a super-cell (partial ordering). Single-crystal X-ray data for Ce3Ga9Ge sub-structure: space group Immm, Z=2, cell parameters a=4.3400(12) Å; b=10.836(3) Å; and c=11.545(3) Å; super-structure: space group Cmma, Z=8, cell parameters a=8.680(3) Å; b=23.090(7) Å; and c=10.836(3) Å. The refinement based on the full-matrix least squares on Fo2[I>2σ(I)] converged to final residuals R1/wR2=0.0226/0.0528 and 0.0729/0.1569 for the sub- and super-structures, respectively. The relationship between the disordered sub-structure and partially ordered super-structure is discussed. Magnetic susceptibility measurements show Curie-Weiss behavior at the temperatures above 30 K with the negative Weiss constants Θ=−49(1) and−7.7 K for Gd and Ce analogs, respectively. An antiferromagnetic transition is observed in the Gd analog at TN=26.1 K. The μeff obtained for both analogs is close to the RE3+ free-ion value.  相似文献   

8.
The two families of intermetallic phases REAuAl4Ge2 (1) (RE=Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Tm and Yb) and REAuAl4(AuxGe1−x)2 (2) (x=0.4) (RE=Ce and Eu) were obtained by the reactive combination of RE, Au and Ge in liquid aluminum. The structure of (1) adopts the space group R-3m (CeAuAl4Ge2, , ; NdAuAl4Ge2, , ; GdAuAl4Ge2, , ; ErAuAl4Ge2, , ). The structure of (2) adopts the tetragonal space group P4/mmm with lattice parameters: , for EuAuAl4(AuxGe1−x)2 (x=0.4). Both structure types present slabs of “AuAl4Ge2” or “AuAl4(AuxGe1−x)2” stacking along the c-axis with layers of RE atoms in between. Magnetic susceptibility measurements indicate that the RE atoms (except for Ce and Eu) possess magnetic moments consistent with +3 species. The Ce atoms in CeAuAl4Ge2 and CeAuAl4(AuxGe1−x)2 (x=0.4) appear to be in a mixed +3/+4 valence state; DyAuAl4Ge2 undergoes an antiferromagnetic transition at 11 K and below this temperature exhibits metamagnetic behavior. The Eu atoms in EuAuAl4(AuxGe1−x)2 (x=0.4) appear to be in a 2+ oxidation state.  相似文献   

9.
The ternary copper indides RE2CuIn3RECu0.5In1.5 (RE=Ce, Pr, Nd, Sm and Gd) were synthesized from the elements in sealed tantalum tubes in an induction furnace. They crystallize with the CaIn2-type structure, space group P63/mmc, with a statistical occupancy of copper and indium on the tetrahedral substructure. These indides show homogeneity ranges RECuxIn2−x. Single crystal structure refinements were performed for five crystals: CeCu0.66In1.34 (a=479.90(7) pm, c=768.12(15) pm), PrCu0.52In1.48 (a=480.23(7) pm, c=759.23(15) pm), NdCu0.53In1.47 (a=477.51(7) pm, c=756.37(15) pm), SmCu0.46In1.54 (a=475.31(7) pm, c=744.77(15) pm), and GdCu0.33In1.67 (a=474.19(7), c=737.67(15) pm). Temperature-dependent susceptibility measurements show antiferromagnetic ordering at TN=4.7 K for Pr2CuIn3 and Nd2CuIn3 and 15 K for Sm2CuIn3. Fitting of the susceptibility data of the samarium compound revealed an energy gap ΔE=39.7(7) K between the ground and the first excited levels.  相似文献   

10.
Single crystals of K3RESi2O7 (RE=Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) were grown from a potassium fluoride flux. Two different structure types were found for this series. Silicates containing the larger rare earths, RE=Gd, Tb, Dy, Ho, Er, Tm, Yb crystallize in a structure K3RESi2O7 that contains the rare-earth cation in both a slightly distorted octahedral and an ideal trigonal prismatic coordination environment, while in K3LuSi2O7, containing the smallest of the rare earths, lutetium is found solely in an octahedral coordination environment. The structure of K3LuSi2O7 crystallizes in space group P63/mmc with a=5.71160(10) Å and c=13.8883(6) Å. The structures containing the remaining rare earths crystallize in the space group P63/mcm with the lattice parameters of a=9.9359(2) Å, c=14.4295(4) Å, (K3GdSi2O7); a=9.88730(10) Å, c=14.3856(3) Å, (K3TbSi2O7); a=9.8673(2) Å, c=14.3572(4) Å, (K3DySi2O7); a=9.8408(3) Å, c=14.3206(6) Å, (K3HoSi2O7); a=9.82120(10) Å, c=14.2986(2) Å, (K3ErSi2O7); a=9.80200(10) Å, c=14.2863(4) Å, (K3TmSi2O7); a=9.78190(10) Å, c=14.2401(3) Å, (K3YbSi2O7). The optical properties of the silicates were investigated and K3TbSi2O7 was found to fluoresce in the visible.  相似文献   

11.
Ternary bismuthides RE5TtBi2 containing rare-earth (RE=La-Nd, Gd-Er) and tetrel (Tt=Si, Ge) atoms have been prepared by arc-melting of the elements followed by annealing at 800 °C. They adopt the β-Yb5Sb3-type structure (Pearson symbol oP32, space group Pnma, Z=4), as revealed through analysis by single-crystal X-ray diffraction on Ce5Si0.869(4)Bi2.131(4) and powder X-ray diffraction on Ce5GeBi2. Cell parameters for the entire series lie in the ranges of a=12.8-11.8 Å, b=9.6-9.0 Å, and c=8.4-7.9 Å. Solid solubility in Ce5SixBi3−x and Pr5SixBi3−x (approximately 0.9≤x≤1.2, depending on the RE member) is much more limited compared to the antimonides, consistent with a highly ordered structure in which the two possible anion sites are essentially segregated into a smaller one occupied by Tt atoms (CN7) and a larger one occupied by Bi atoms (CN9). Band structure calculations on La5SiBi2 confirm the importance of La-La bonding interactions near the Fermi level. X-ray photoelectron spectra support the presence of partially anionic Bi atoms, as indicated by a small negative binding energy shift relative to elemental Bi. The Ce and Pr members undergo magnetic transitions at low temperatures, possibly involving ferromagnetic interactions, that are strongly influenced by the nature of the Tt atom.  相似文献   

12.
The ternary rare-earth metal boride carbides RE15B6C20 (RE=Pr, Nd) were synthesized by co-melting the elements. They exist above 1270 K. Their crystal structures were determined from single-crystal X-ray diffraction data. Both crystallize in the space group P1¯, Z=1, a=8.3431(8) Å, b=9.2492(9) Å, c=8.3581(8) Å, α=84.72(1)°, β=89.68(1)°, γ =84.23(1)° (R1=0.041 (wR2=0.10) for 3291 reflections with Io>2σ(Io)) for Pr15B6C20, and a=8.284(1) Å, b=9.228(1) Å, c=8.309(1) Å, α=84.74(1)°, β=89.68(1)°, γ=84.17(2)° (R1=0.033 (wR2=0.049) for 2970 reflections with Io>2σ(Io)) for Nd15B6C20. Their structure consists of a three-dimensional framework of rare-earth metal atoms resulting from the stacking of slightly corrugated and distorted square nets, leading to cavities filled with unprecedented B2C4 finite chains, disordered C3 entities and isolated carbon atoms, respectively. Structural and theoretical analyses suggest the ionic formulation (RE3+)15([B2C4]6−)3([C3]4−)2(C4−)2·11ē. Accordingly, density functional theory calculations indicate that the compounds are metallic. Both structural arguments as well as energy calculations on different boron vs. carbon distributions in the B2C4 chains support the presence of a CBCCBC unit. Pr15B6C18 exhibits antiferromagnetic order at TN=7.9 K, followed by a meta-magnetic transition above a critical external field B>0.03 T. On the other hand, Nd15B6C18 is a ferromagnet below TC≈40 K.  相似文献   

13.
New ternary rare-earth metal boride carbides RE25B14C26 (RE=Pr, Nd) and Nd25B12C28 were synthesized by co-melting the elements. Nd25B12C28 is stable up to 1440 K. RE25B14C26 (RE=Pr, Nd) exist above 1270 K. The crystal structures were investigated by means of single-crystal X-ray diffraction. Nd25B12C28: space group P, a=8.3209(7) Å, b=8.3231(6) Å, c=29.888(2) Å, α=83.730(9)°, β=83.294(9)°, γ=89.764(9)°. Pr25B14C26: space group P21/c, a=8.4243(5) Å, b=8.4095(6) Å, c=30.828(1) Å, β=105.879(4)°, V=2100.6(2) Å3, (R1=0.048 (wR2=0.088) from 2961 reflections with Io>2σ(Io)); for Nd25B14C26 space group P21/c, Z=2, a=8.3404(6) Å, b=8.3096(6) Å, c=30.599(2) Å, β=106.065(1)°. Their structures consist of a three-dimensional framework of rare-earth metal atoms resulting from the stacking of slightly corrugated and distorted square nets, leading to cavities filled with cumulene-like molecules [B2C4]6− and [B3C3]7−, nearly linear [BC2]5− and bent [BC2]7− units and isolated carbon atoms. Structural and theoretical analysis suggests the ionic formulation for RE25B14C26: (RE3+)25[B2C4]6−([B3C3]7−)2([BC2]5−)4([BC2]7−)2(C4−)4·5e and for Nd25B12C28: (Nd3+)25([B2C4]6−)3([BC2]5−)4([BC2]7−)2(C4−)4·7e. Accordingly, extended Hückel tight-binding calculations indicate that the compounds are metallic in character.  相似文献   

14.
Thin films of RE2Ti2O7 (RE=La, Nd, Sm, Gd) were deposited on single crystal SrTiO3 (110) substrates at 900 °C using pulsed laser deposition. X-ray diffraction (XRD) results showed sharp (00k) peaks (in θ-2θ scans) with narrow rocking curves (ω-scan peak widths of 0.4-0.9°), indicating that all compositions adopted the (110)-layered perovskite structure. While this is the stable structure for RE=La and Nd, it is metastable for RE=Sm and Gd. The metastable compounds are formed directly through epitaxial stabilization at these high temperatures and are shown to be isostructural to monoclinic La2Ti2O7. The a, b, and c lattice parameters decreased monotonically with decreasing size of the RE cation, while the monoclinic angle remained fairly constant. The epitaxial relationship between the (110)-layered RE2Ti2O7 films and the SrTiO3(110) substrate was found by XRD and transmission electron microscopy to be . The single-phase, metastable, epitaxial, 100 nm thick films maintained the layered perovskite structure even after annealing at 900 °C for two hours in 200 Torr of oxygen.  相似文献   

15.
Reported are the synthesis and the structural characterization of four new polar intermetallic phases, which exist only with mixed alkaline-earth and rare-earth metal cations in narrow homogeneity ranges. (Sr1-xCax)5In3Ge6 and (Eu1-xYbx)5In3Ge6 (x≈0.7) crystallize in the orthorhombic space group Pnma with two formula units per unit cell (own structure type, Pearson symbol oP56). The lattice parameters are as follows: a=13.109(3)-13.266(3) Å, b=4.4089(9)-4.4703(12) Å, and c=23.316(5)-23.557(6) Å. (Sr1-xCax)3In2Ge4 and (Sr1-xYbx)3In2Ge4 (x≈0.4-0.5) adopt another novel monoclinic structure-type (space group C2/m, Z=4, Pearson symbol mS36) with lattice parameters in the range a=19.978(2)-20.202(2) Å, b=4.5287(5)-4.5664(5) Å, c=10.3295(12)-10.3447(10) Å, and β=98.214(2)-98.470(2)°, depending on the metal cations and their ratio. The polyanionic sub-structures in both cases are based on chains of InGe4 corner-shared tetrahedra. The A5In3Ge6 structure (A=Sr/Ca or Sr/Yb) also features Ge4 tetramers, and isolated In atoms in nearly square-planar environment, while the A3In2Ge4 structure (A=Sr/Ca or Eu/Yb) contains zig-zag chains of In and Ge strings with intricate topology of cis- and trans-bonds. The experimental results have been complemented by tight-binding linear muffin-tin orbital (LMTO) band structure calculations.  相似文献   

16.
The Co2−xCux(OH)AsO4 (x=0 and 0.3) compounds have been synthesized under mild hydrothermal conditions and characterized by X-ray single-crystal diffraction and spectroscopic data. The hydroxi-arsenate phases crystallize in the Pnnm orthorhombic space group with Z=4 and the unit-cell parameters are a=8.277(2) Å, b=8.559(2) Å, c=6.039(1) Å and a=8.316(1) Å, b=8.523(2) Å, c=6.047(1) Å for x=0 and 0.3, respectively. The crystal structure consists of a three-dimensional framework in which M(1)O5-trigonal bipyramid dimers and M(2)O6-octahedral chains (M=Co and Cu) are present. Co2(OH)AsO4 shows an anomalous three-dimensional antiferromagnetic ordering influenced by the magnetic field below 21 K within the presence of a ferromagnetic component below the ordering temperature. When Co2+ is partially substituted by Cu2+ions, Co1.7Cu0.3(OH)AsO4, the ferromagnetic component observed in Co2(OH)AsO4 disappears and the antiferromagnetic order is maintained in the entire temperature range. Heat capacity measurements show an unusual magnetic field dependence of the antiferromagnetic transitions. This λ-type anomaly associated to the three-dimensional antiferromagnetic ordering grows with the magnetic field and becomes better defined as observed in the non-substituted phase. These results are attributed to the presence of the unpaired electron in the dx2y2 orbital and the absence of overlap between neighbour ions.  相似文献   

17.
The ternary intermetallic compounds RE2Cu2Cd (RE=Y, Sm, Gd-Tm, Lu) were synthesized by induction-melting of the elements in sealed tantalum tubes. The samples were characterized by X-ray powder diffraction. The structure of Gd2Cu2Cd was refined from single crystal X-ray diffractometer data: Mo2FeB2 type, space group P4/mbm, a=756.2(3), c=380.2(3) pm, wR2=0.0455, 321 F2 values, 12 variables. The structures are 1:1 intergrowth variants of slightly distorted CsCl and AlB2 related slabs of compositions RECd and RECu2. The copper and cadmium atoms build up two-dimensional [Cu2Cd] networks (257 pm Cu-Cu and 301 pm Cu-Cd in Gd2Cu2Cd) which are bonded to the rare earth atoms via short RE-Cu contacts (290 pm in Gd2Cu2Cd). Temperature dependent susceptibility measurements of RE2Cu2Cd with RE=Gd, Tb, Dy, and Tm show experimental magnetic moments which are close to the free RE3+ ion values. The four compounds show ferromagnetic ordering at TC=116.7(2), 86.2(3), 48.4(1), and 14.5(1) K, respectively, as confirmed by heat capacity measurements. Dy2Cu2Cd shows a spin reorientation at TN=16.9(1) K.  相似文献   

18.
Solid solutions SrAuxIn4−x (0.5?x?1.2) and SrAuxSn4−x (1.3?x?2.2) have been prepared at 700 °C and their structures characterized by powder and single-crystal X-ray diffraction. They adopt the tetragonal BaAl4-type structure (space group I4/mmm, Z=2; SrAu1.1(1)In2.9(1), a=4.5841(2) Å, c=12.3725(5) Å; SrAu1.4(1)Sn2.6(1), a=4.6447(7) Å, c=11.403(2) Å), with Au atoms preferentially substituting into the apical over basal sites within the anionic network. The phase width inherent in these solid solutions implies that the BaAl4-type structure can be stabilized over a range of valence electron counts (vec), 13.0-11.6 for SrAuxIn4−x and 14.1-11.4 for SrAuxSn4−x. They represent new examples of electron-poor BaAl4-type compounds, which generally have a vec of 14. Band structure calculations confirm that substitution of Au, with its smaller size and fewer number of valence electrons, for In or Sn atoms enables the BaAl4-type structure to be stabilized in the parent binaries SrIn4 and SrSn4, which adopt different structure types.  相似文献   

19.
Four new ternary compounds Zr5M1-xPn2+x (M=Cr, Mn; Pn=Sb, Bi) were synthesized by arc-melting and annealing at 800 °C. They crystallize in the tetragonal W5Si3-type structure. The crystal structure of Zr5Cr0.49(2)Sb2.51(2) was refined from powder X-ray diffraction data by the Rietveld method (Pearson symbol tI32, tetragonal, space group I4/mcm, Z=4, a=11.1027(6) Å, c=5.5600(3) Å). Four-probe electrical resistivity measurements on sintered polycrystalline samples indicated metallic behavior. Magnetic susceptibility measurements between 2 and 300 K revealed temperature-independent Pauli paramagnetism for Zr5Cr1-xSb2+x and Zr5Cr1-xBi2+x, but a strong temperature dependence for Zr5Mn1-xSb2+x and Zr5Mn1-xBi2+x which was fit to the Curie-Weiss law for the latter with θ=-11.3 K and μeff=1.81(1) μB. Band structure calculations for Zr5Cr0.5Sb2.5 support a structural model in which Cr and Sb atoms alternate within the chain of interstitial sites formed at the centers of square antiprismatic Zr8 clusters.  相似文献   

20.
A new ternary compound, U3Co2Ge7, has been synthesized from the corresponding elements by a high temperature reaction using molten tin flux. It crystallizes in the orthorhombic La3Co2Sn7-type (Pearson's symbol oC24, space group Cmmm, No. 65) with lattice parameters determined from single-crystal X-ray diffraction as follows: a=4.145(2) Å; b=24.920(7); c=4.136(2) Å, V=427.2(3) Å3. Structure refinements confirm an ordered structure having two crystallographically inequivalent uranium atoms, occupying sites with dissimilar coordination. U3Co2Ge7 orders ferromagnetically below 40 K and undergoes a consecutive magnetic transition at 20 K. These results have been obtained from temperature- and field-dependent magnetization, resistivity and heat-capacity measurements. The estimated Sommerfeld coefficient γ=87 mJ/mol-U K2 suggests U3Co2Ge7 to be a moderately heavy-fermion material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号