首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
The influence of Bi3+ on the structural and magnetic properties of the rare-earth-containing perovskites REFe0.5Mn0.5O3 (RE=La,Nd) was studied, and the limit of bismuth substitution was determined to be x≤0.5 in BixRE1−xFe0.5Mn0.5O3+δ (RE=La,Nd) at ambient pressure. Crystal structures in both La and Nd series were determined to be GdFeO3-type Pnma with the exception of the Bi0.3La0.7Fe0.5Mn0.5O3 sample, which is monoclinic I2/a in the abb tilt scheme. The samples undergo a transition to G-type antiferromagnetic order along with a weak ferromagnetic component, mixed with cluster-glass type behavior. The substitution of bismuth into the lattice results in a drop in TN relative to the lanthanide end-members. Long range ordering temperatures TN in the range 240-255 K were observed, with a significantly lower ordered magnetic moment in the case of lanthanum (M∼1.7-1.9 μB) than in the case of neodymium (M∼2.1 μB).  相似文献   

2.
The indides Ce7NixGexIn6 and Pr7NixGexIn6 were synthesized from the elements by arc-melting of the components. Single crystals were grown via special annealing sequences. Both structures were solved from X-ray single crystal diffraction data: new structure type, P6/m, Z=1, a=11.385(2), c=4.212(1) Å, wR2=0.0640, 634F2 values, 25 variables for Ce7Ni4.73Ge3.27In6 and a=11.355(6), c=4.183(2) Å, wR2=0.0539, 563F2 values, 25 variables for Pr7Ni4.96Ge3.04In6. Both indides show homogeneity ranges through Ni/Ge mixing (M sites). This new structure type can be derived from the AlB2 structure type by a substitution of the Al and B atoms by CeM12 and NiIn6Ce3 polyhedra (tricapped trigonal prism). Magnetic susceptibility measurements on a polycrystalline sample of Ce7Ni5Ge3In6 indicated Curie-Weiss like paramagnetic behavior down to 1.71 K with the effective magnetic moment slightly reduced in relation to the value expected for trivalent cerium ions. No magnetic ordering is evident.  相似文献   

3.
The ternary copper indides RE2CuIn3RECu0.5In1.5 (RE=Ce, Pr, Nd, Sm and Gd) were synthesized from the elements in sealed tantalum tubes in an induction furnace. They crystallize with the CaIn2-type structure, space group P63/mmc, with a statistical occupancy of copper and indium on the tetrahedral substructure. These indides show homogeneity ranges RECuxIn2−x. Single crystal structure refinements were performed for five crystals: CeCu0.66In1.34 (a=479.90(7) pm, c=768.12(15) pm), PrCu0.52In1.48 (a=480.23(7) pm, c=759.23(15) pm), NdCu0.53In1.47 (a=477.51(7) pm, c=756.37(15) pm), SmCu0.46In1.54 (a=475.31(7) pm, c=744.77(15) pm), and GdCu0.33In1.67 (a=474.19(7), c=737.67(15) pm). Temperature-dependent susceptibility measurements show antiferromagnetic ordering at TN=4.7 K for Pr2CuIn3 and Nd2CuIn3 and 15 K for Sm2CuIn3. Fitting of the susceptibility data of the samarium compound revealed an energy gap ΔE=39.7(7) K between the ground and the first excited levels.  相似文献   

4.
Vacuum ultraviolet (VUV) excitation and photoluminescent (PL) properties of Eu3+ and Tb3+ ion-doped aluminate phosphors, GdCaAl3O7:Eu3+ and GdCaAl3O7:Tb3+ have been investigated. X-ray diffraction (XRD) patterns indicate that the phosphor GdCaAl3O7 forms without impurity phase at 900 °C. Field emission scanning electron microscopy (FE-SEM) images show that the particle size of the phosphor is less than 3 μm. Upon excitation with VUV irradiation, the phosphors show a strong emission at around 619 nm corresponding to the forced electric dipole 5D07F2 transition of Eu3+, and at around 545 nm corresponding to the 5D47F5 transition of Tb3+. The results reveal that both GdCaAl3O7:RE3+ (RE=Eu, Tb) are potential candidates as red and green phosphors, respectively, for use in plasma display panel (PDP).  相似文献   

5.
The rare earth-nickel-indides RE14Ni3In3 (RE=Sc, Y, Gd-Tm, Lu) were synthesized from the elements by arc-melting and subsequent annealing. The compounds were investigated on the basis of X-ray powder and single crystal data: Lu14Co2In3 type, P42/nmc, Z=4, a=888.1(1), c=2134.7(4), wR2=0.0653, 1381 F2 values, 63 variables for Sc13.89Ni3.66In2.45; a=961.2(1), c=2316.2(5), wR2=0.0633, 1741 F2 values, 64 variables for Y13.84Ni3.19In2.97; a=965.3(1), c=2330.5(5), wR2=0.0620, 1765 F2 values, 63 variables for Gd14Ni3.29In2.71; a=956.8(1), c=2298.4(5), wR2=0.0829, 1707 F2 values, 64 variables for Tb13.82Ni3.36In2.82; a=951.7(1), c=2289.0(5), wR2=0.0838, 1794 F2 values, 64 variables for Dy13.60Ni3.34In3.06; a=948.53(7), c=2270.6(1), wR2=0.1137, 1191 F2 values, 64 variables for Ho13.35Ni3.17In3.48; a=943.5(1), c=2269.1(5), wR2=0.0552, 1646 F2 values, 64 variables for Er13.53Ni3.14In3.33; a=938.42(7), c=2250.8(1), wR2=0.1051, 1611 F2 values, 64 variables for Tm13.47Ni3.28In3.25; a=937.3(1), c=2249.6(5), wR2=0.0692, 1604 F2 values, 64 variables for Tm13.80Ni3.49In2.71; and a=933.4(1), c=2263.0(5), wR2=0.0709, 1603 F2 values, 64 variables for Lu13.94Ni3.07In2.99. The RE14Ni3In3 indides show significant Ni/In mixing on the 4c In1 site. Except the gadolinium compound, the RE14Ni3In3 intermetallics also reveal RE/In mixing on the 4c RE1 site, leading to the refined compositions. Due to the high rare earth metal content, the seven crystallographically independent RE sites have between 9 and 10 nearest RE neighbors. The RE14Ni3In3 structures can be described as a complex intergrowth of rare earth-based polyhedra. Both nickel sites have a distorted trigonal-prismatic rare earth coordination. An interesting feature is the In2-In2 dumb-bell at an In2-In2 distance of 304 pm (for Gd14Ni3.29In2.71). The crystal chemical peculiarities of the RE14Ni3In3 indides are briefly discussed.  相似文献   

6.
Using Na2CO3-H3BO3-NaF as fluxes, transparent RE:Na3La9O3(BO3)8 (abbr. RE:NLBO, RE=Er, Yb) crystals have been grown by the top seed solution growth (TSSG) method. The X-ray powder diffraction analysis shows that the RE:NLBO crystals have the same structure with NLBO. The element contents were determined by molar to be 0.64% Er3+ in Er:NLBO, 2.70% Yb3+ in Yb:NLBO, respectively. The polarized absorption spectra of RE:NLBO have been measured at room temperature and show that both Er:NLBO and Yb:NLBO have a strong absorption bands near 980 nm with wide FWHM (Full Wave at Half Maximum) (21 nm for Er:NLBO and 25 nm for Yb:NLBO). Fluorescence spectra have been recorded. Yb:NLBO has the emission peaks at 985 nm, 1028 nm and 1079 nm and the emission peak of Er:NLBO is at 1536 nm. Spectral parameters have been calculated by the Judd-Ofelt theory for Er:NLBO and the reciprocity method for Yb:NLBO, respectively. The calculated values show that Er:NLBO is a candidate of 1.55 μm laser crystals and Yb:NLBO is a candidate for self-frequency doubling crystal.  相似文献   

7.
8.
The ternary antimonide CeIrSb absorbs hydrogen under moderate temperature and pressure conditions (4 MPa and 573 K), leading to the hydride CeIrSbH0.8. The crystal structures of both compounds have been investigated by X-ray diffraction on powders and single crystals: TiNiSi type, space group Pnma, a=735.07(7), b=456.93(4), c=792.8(1) pm, R1/wR2=0.0206/0.0395, 601 F2 values for CeIrSb and a=728.16(14), b=460.35(6), c=825.87(2) pm, R1/wR2=0.0322/0.0735, 528 F2 values for CeIrSbH0.8 with 20 variables per refinement. Hydrogenation induces both an increase of the cell volume V (+4%) and a strongly anisotropic expansion of the unit cell with a maximum of 4.3% in the c direction, leading to a significant increase of the Ce-Ir and Ce-Ce distances in this direction. The H-insertion into CeIrSb leads to a magnetic transition from intermediate valence to antiferromagnetic behavior (TN=7.0 K) evidenced by magnetization, electrical resistivity and specific heat measurements. This transition can be explained on the basis of the Doniach diagram considering the Jcf interaction between the 4f(Ce) and conduction electrons.  相似文献   

9.
The crystal chemistry and crystallography of the compounds SrR2CuO5 (Sr-121, R=lanthanides) were investigated using the powder X-ray Rietveld refinement technique. Among the 11 compositions studied, only R=Dy and Ho formed the stable SrR2CuO5 phase. SrR2CuO5 was found to be isostructural with the “green phase”, BaR2CuO5. The basic structure is orthorhombic with space group Pnma. The lattice parameters for SrDyCuO5 are a=12.08080(6) Å, b=5.60421(2) Å, c=7.12971(3) Å, V=482.705(4) Å3, and Z=8; and for the Ho analog are a=12.03727(12) Å, b=5.58947(7) Å, c=7.10169(7) Å, V=477.816(9) Å3, and Z=8. In the SrR2CuO5 structure, each R is surrounded by seven oxygen atoms, forming a monocapped trigonal prism (RO7). The isolated CuO5 group forms a distorted square pyramid. Consecutive layers of prisms are stacked in the b-direction. Bond valence calculations imply that residual strain is largely responsible for the narrow stability of the SrR2CuO5 phases with R=Dy and Ho only. X-ray powder reference diffraction patterns for SrDy2CuO5 and SrHo2CuO5 were determined.  相似文献   

10.
YBa2Cu3Ox (Y-123) and Bi2Sr2Ca1Cu2Ox (Bi-2212) films on various substrates have been prepared by Metal-Organic Deposition starting from different metallorganic fluorine-free compounds and using a very simple instrumentation. The processing conditions include a rapid pyrolysis step in air and an annealing step in oxygen for Y-123 and in air for Bi-2212. The films obtained have been characterized by X-ray diffraction (XRD) and the formation of a superconducting phase of Y-123 or Bi-2212 was confirmed measuring the critical temperature (T c) with Ac-susceptibility and resistive measurements. Microstructure and final cationic ratios have been studied by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS).  相似文献   

11.
La2Mo2O9 ceramics have been prepared from freeze-dried precursors and their properties compared to those of lantanum molybdate obtained by conventional solid state (SS) reaction. All materials have been characterized by X-ray diffraction, scanning electron microscopy and thermal analysis (TGA/DTA/DSC and dilatometry) to characterize the phase formation and phase transition. When the freeze-dried method was applied, the synthesis temperature required to obtain dense samples was much lower than that for powders obtained by SS reaction. The morphology and structure of the oxide particle are significantly dependent on the synthesis method. The grain size is smaller, whereas the density of sintered pellets is higher for the freeze-dried precursor powder when compared with the SS reaction method. Impedance spectroscopy was used to measure the electrical conductivity of La2Mo2O9 from 548 to 1123 K, in air, and to characterize the blocking effects of grain boundaries.  相似文献   

12.
The structure of β-AgAlO2 has been refined from neutron diffraction data by the Rietveld method. The space group is Pna21 with a=5.4306(1) Å, b=6.9802(1) Å, c=5.3751(1) Å, and Z=4. Both cations are tetrahedrally coordinated to oxygen. The tetrahedron around Al is quite regular with distances ranging from 1.75 to 1.77 Å and angles ranging from 107.8 to 111.0°. The tetrahedron around Ag is, however, highly distorted with distances ranging from 2.35 to 2.48 Å and angles ranging from 99.3 to 131.6°. The low bond valence calculated for Ag(I) of 0.895 is attributed to the strong deviation of the O−Ag−O angles from 109.5°. This structure is based on the hexagonal ZnO structure, and we show that the ordered arrangement of M(I) and M(III) cations in this structure directly causes the tetrahedra to distort and tilt.  相似文献   

13.
Single crystals of a series of lanthanide lithium iridium oxides, Ln2LiIrO6 (Ln=La, Pr, Nd, Sm, Eu) with the double perovskite structure have been grown from molten LiOH/KOH fluxes. The compounds crystallize in a distorted 1:1 rock salt lattice of Li+ and Ir5+ cations in the monoclinic space group P21/n. The magnetic susceptibilities of Ln2LiIrO6 (Ln=Pr, Nd, Sm, Eu) are presented.  相似文献   

14.
The ternary rare-earth chromium germanides RECrxGe2 (RE=Sm, Gd-Er) have been obtained by reactions of the elements, either in the presence of tin or indium flux, or through arc-melting followed by annealing at 800 °C. The homogeneity range is limited to 0.25?x?0.50 for DyCrxGe2. Single-crystal and powder X-ray diffraction studies on the RECr0.3Ge2 members revealed that they adopt the CeNiSi2-type structure (space group Cmcm, Z=4, a=4.1939(5)-4.016(2) Å, b=16.291(2)-15.6579(6) Å, c=4.0598(5)-3.9876(2) Å in the progression for RE=Sm to Er), which can be considered to be built up by stuffing transition-metal atoms into the square pyramidal sites of a “REGe2” host with the ZrSi2-type structure. (The existence of YbCr0.3Ge2 is also implicated.) Only the average structure was determined here, because unusually short Cr-Ge distances imply the development of a superstructure involving distortions of the square Ge net. Magnetic measurements on RECr0.3Ge2 (RE=Gd-Er) indicated that antiferromagnetic ordering sets in below TN (ranging from 3 to 17 K), with additional transitions observed at lower temperatures for the Tb and Dy members.  相似文献   

15.
Single crystals of double-perovskite type lanthanide magnesium iridium oxides, Ln2MgIrO6 (Ln=Pr, Nd, Sm-Gd) have been grown in a molten potassium hydroxide flux. The compounds crystallize in a distorted 1:1 rock salt lattice, space group P21/n, consisting of corner shared MO6 (M=Mg2+ and Ir4+) octahedra, where the rare earth cations occupy the eight-fold coordination sites formed by the corner shared octahedra. Pr2MgIrO6, Nd2MgIrO6, Sm2MgIrO6, and Eu2MgIrO6 order antiferromagnetically around 10-15 K.  相似文献   

16.
Single crystals of the new compounds TM2Cu3Ga8 (TM=V, Mo, W) were synthesised from the elements. Structure determinations of the isotypic compounds (cI104, space group , Z=8; Mo2Cu3Ga8: a=11.9171(10) Å, 613 refl., 23 param., R1(F)=0.022, wR2(F2)=0.047; W2Cu3Ga8: 11.9248(8) Å, 346 refl., 23 param., R1(F)=0.048, wR2(F2)=0.086; V2Cu3Ga8: 11.7861(14) Å, 374 refl., 24 param., R1(F)=0.033, wR2(F2)=0.081) showed a new cubic structure type which can be classified as an ordered defect variant of a bcc packing with a=4a: [(TM)2(Cu)3(□)3][Ga8]. The coordination polyhedra of the transition metals consist of Ga8-cubes with 3 sides capped by Cu leading to coordination number 11. The arrangement of the TMGa8Cu3-polyhedra is in a way they form itself a 3-fold capped cube. All compositions were confirmed by EDX measurements.  相似文献   

17.
Magnetic properties of peculiar structural-type borate Cu2NiB2O6 are investigated by means of ac susceptibility, dc magnetization, and heat capacity measurements. This material is isostructural to Cu2CoB2O6, of which the structural configuration is composed of quasi-one-dimensional six-columns ribbons. Our experimental results show that this material displays an antiferromagnetic phase transition at ∼15 K, which differs from Cu2CoB2O6 showing spin-glass behavior below 5 K. The different magnetic ground states in these compounds may be attributed mainly to the subtle balance of the exchange energy in the scalene triangles.  相似文献   

18.
A new vanadate PbCo2V2O8 was obtained through the study of PbO-CoO-V2O5 ternary system. The crystal structure was determined by Rietveld method, indicating that PbCo2V2O8 has a tetragonal structure of space group I41cd with a spiral chain along the c-axis. Magnetic properties of the titled compound were investigated by means of susceptibility, magnetization, and heat capacity measurements. The results show that PbCo2V2O8 is a quasi-one-dimensional canted antiferromagnet with Neel temperature of ∼4 K, being consistent with its crystal structure.  相似文献   

19.
The crystal structures and magnetic properties of the quaternary lanthanide oxides Ba6Ln2Fe4O15 (Ln=Pr and Nd) are reported. They crystallize in a hexagonal structure with space group P63mc and have the “Fe4O15 cluster” consisting of one FeO6 octahedron and three FeO4 tetrahedra. Measurements of the magnetic susceptibility, specific heat, and powder neutron diffraction reveal that this cluster behaves as a spin tetramer with a ferrimagnetic ground state of ST=5 even at room temperature. The cluster moments show a long-range antiferromagnetic ordering at 23.2 K (Ln=Pr) and 17.8 K (Nd), and the magnetic moments of the Ln3+ ions also order cooperatively. By applying the magnetic field (∼2 T), this antiferromagnetic ordering of the clusters changes to a ferromagnetic one. This result indicates that there exists a competition in the magnetic interaction between the clusters.  相似文献   

20.
A new compound Ce12Pt7In was synthesized and its crystal structure at 300 K has been determined from single crystal X-ray data. It is tetragonal, space group I4/mcm, Z=4, with the lattice parameters: a=12.102(1) Å and c=14.542(2) Å, wR2=0.1102, 842 F2 values, 33 variable parameters. The structure of Ce12Pt7In is a fully ordered ternary derivative of the Gd3Ga2-type. Isostructural compounds has been found to form with Pr (a=11.976(1) Å, c=14.478(2) Å), Nd (a=11.901(1) Å, c=14.471(2) Å), Gd (a=11.601(3) Å, c=14.472(4) Å), and Ho (a=11.369(1) Å, c=14.462(2) Å). Magnetic properties of Ce12Pt7In, Pr12Pt7In and Nd12Pt7In were studied down to 1.7 K. All three ternaries order magnetically at low temperatures with complex spin arrangements. The electrical resistivity of Ce12Pt7In and Nd12Pt7In is characteristic of rare-earth intermetallics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号