首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 408 毫秒
1.
A-site substituted cerium orthovanadates, Ce1−xSrxVO4, were synthesised by solid-state reactions. It was found that the solid solution limit in Ce1−xSrxVO4 is at x=0.175. The crystal structure was analysed by X-ray diffraction and it exhibits a tetragonal zircon structure of space group I41/amd (1 4 1) with a=7.3670 (3) and c=6.4894 (1) Å for Ce0.825Sr0.175VO4. The UV-vis absorption spectra indicated that the compounds have band gaps at room temperature in the range 4.5-4.6 eV. Conductivity measurements were performed for the first time up to the strontium solid solution limit in air and in dry 5% H2/Ar with conductivity values at 600 °C ranging from 0.3 to 30 mS cm−1 in air to 30-45 mS cm−1 in reduced atmosphere. Sample Ce0.825Sr0.175VO4 is redox stable at a temperature below 600 °C although the conductivity is not high enough to be used as an electrode for solid oxide fuel cells.  相似文献   

2.
Five series of perovskite-type compounds in the system La1−xCaxCr1−yTiyO3 with the nominal compositions y=0, x=0-0.5; y=0.2, x=0.2-0.8; y=0.5, x=0.5-1.0; y=0.8, x=0.6-1.0 and y=1, x=0.8-1 were synthesized by a ceramic technique in air (final heating 1350 °C). On the basis of the X-ray analysis of the samples with (Ca/Ti)?1, the phase diagram of the CaTiO3-LaCrIIIO3-CaCrIVO3 quasi-ternary system was constructed. Extended solid solution with a wide homogeneity range is formed in the quasi-ternary system CaCrIVO3-CaTiO3-LaCrIIIO3. The solid solution La(1−x′−y)Ca(x′+y)CrIVxCrIII(1−x′−y)TiyO3 exists by up to 0.6-0.7 mol fractions of CaCrIVO3 (x<0.6-0.7) at the experimental conditions. The crystal structure of the compounds is orthorhombic in the space group Pbnm at room temperature. The lattice parameters and the average interatomic distances of the samples within the solid solution ranges decrease uniformly with increasing Ca content. Outside the quasi-ternary system, the nominal compositions La0.1Ca0.9TiO3, La0.2Ca0.8TiO3, La0.4Ca0.6Cr0.2Ti0.8O3 and La0.3Ca0.7Cr0.2Ti0.8O3 in the system La1−xCaxCr1−yTiyO3 were found as single phases with an orthorhombic structure. In the temperature range between 850 and 1000 °C, the synthesized single-phase compositions are stable at pO2=6×10−16-0.21×105 Pa. Oxygen stoichiometry and electrical conductivity of the separate compounds were investigated as functions of temperature and oxygen partial pressure. The chemical stability of these oxides with respect to oxygen release during thermal dissociation decreases with increasing Ca-content. At 900 °C and oxygen partial pressure 1×10−15-0.21×105 Pa, the compounds with x>y (acceptor doped) are p-type semiconductors and those with x<y (donor doped) and x=y are n-type semiconductors. The type and level of electrical conductivity are functions of the concentration ratios of cations occupying the B-sites of the perovskite structures: [Cr3+]/[Cr4+] and [Ti4+]/[Ti3+]. The maximum electrical conductivity at 900 °C and pO2=10−15 Pa was found for the composition La0.1Ca0.9TiO3 (near 50 S/cm) and in air at 900 °C for La0.5Ca0.5CrO3 (close to 100 S/cm).  相似文献   

3.
A structural, magnetic and electronic study of the cobaltocuprate CoSr2Y2−xCexCu2Oδ (x=0.5-0.8) has been performed. All materials crystallise in the orthorhombic Cmcm symmetry space group in which chains of corner linked CoO4 tetrahedra run parallel to the 1 1 0 direction. An antiferromagnetic transition is observed for x=0.5-0.8; TM increases with x. A change in the dimensionality of the magnetic order occurs at x=0.8 as the interchain distance increases to a critical value. There is charge transfer between the cuprate planes and cobaltate layer as Ce doping increases, so that Co3+ is partially oxidised to Co4+ with a concomitant reduction in the valence of Cu. Superconductivity is not observed in any of the samples and a crossover from Mott to Efros and Shklovskii variable range hopping behaviour is evidenced as x increases from 0.5 to 0.8.  相似文献   

4.
Crystal structures and magnetic properties of metal telluromolybdates Co1−xZnxTeMoO6 (x=0.0, 0.1,…,0.9) are reported. All the compounds have an orthorhombic structure with space group P21212 and a charge configuration of M2+Te4+Mo6+O6. In this structure, M ions form a pseudo-two-dimensional lattice in the ab plane. Their magnetic susceptibility measurements have been performed in the temperature range between 1.8 and 300 K. The end member CoTeMoO6 shows a magnetic transition at 24.4 K. The transition temperature for solid solutions rapidly decreases with increasing x and this transition disappears between x=0.4 and 0.5, which is corresponding to the percolation limit for the square-planer lattice. From the magnetization, specific heat, and powder neutron diffraction measurements, it is found that the magnetic transition observed in the CoTeMoO6 is a canted antiferromagnetic ordering of Co2+ ions. The antiferromagnetic component of the ordered magnetic moment (3.12(3)μB at 10 K) is along the b-axis. In addition, there exists a small ferromagnetic component (0.28(3)μB) along the a-axis.  相似文献   

5.
Large single crystals from RENi2-xP2 (RE=La, Ce, Pr) were synthesized from the pure elements using Sn as a metal flux, and their structures were established by X-ray crystallography. The title compounds were confirmed to crystallize in the body-centered tetragonal ThCr2Si2 structure type (space group I4/mmm (No. 139); Pearson's symbol tI10), but with a significant homogeneity range with respect to the transition metal. Systematic synthetic work, coupled with accurate structure refinements indicated strong correlation between the degree of Ni-deficiency and the reaction conditions. According to the temperature dependent dc magnetization measurements, LaNi2-xP2 (x=0.30(1)), as expected, is Pauli-like paramagnetic in the studied temperature regime, while the Ce-analog CeNi2-xP2 (x=0.28(1)) shows the characteristics of a mixed valent Ce3+/Ce4+ system with a possible Kondo temperature scale on the order of 1000 K. For three different PrNi2-xP2 (x?0.5) samples, the temperature and field dependence of the magnetization indicated typical local moment 4f-magnetism and a stable Pr3+ ground state, with subtle variations of TC as a function of the concentration of Ni defects. Field-dependent heat capacity data for CeNi2-xP2 (x=0.28(1)) and PrNi2-xP2 (x=0.53(1)) are discussed as well.  相似文献   

6.
The non-linear thermal expansion behaviour observed in Ce1−yPryO2−δ materials can be substantially controlled by Gd substitution. Coulometric titration shows that the charge compensation mechanism changes with increasing x, in the system GdxCe0.8−xPr0.2O2−δ. For x=0.15, charge compensation is by vacancy formation and destabilises the presence of Pr4+. At x=0.2, further Gd substitution is charge compensated by additionally raising the oxidation state of Pr rather than solely the creation of further oxygen ion vacancies. Oxygen concentration cell e.m.f. measurements in an oxygen/air potential gradient show that increasing Gd content decreases ionic and electronic conductivities. Ion transference numbers measured under these conditions show a positive temperature dependence, with typical values to=0.90,0.98 and 0.80 for x=0,0.15 and 0.2, respectively, at 950 °C. These observations are discussed in terms of defect association. Oxygen permeation fluxes are limited by both bulk ambipolar conductivity and surface exchange. However, the composition dependent trends in permeability are shown to be dominated by ambipolar conductivities, and limited by the level of electronic conductivity. At the highest temperatures, oxygen permeability of composition x=0.2 approaches that of composition x=0, Ce0.8Pr0.2O2−δ, with specific oxygen permeability values approximately 2×10−9 mol s−1 cm−1 at 950 °C, but offering much better thermal expansion properties.  相似文献   

7.
Compounds in the solid solution series Ca1−xNaxTi1−xTaxO3 were synthesized at 1300 °C, followed by annealing at 850 °C or 800 °C with quenching and/or slow cooling to room temperature. Rietveld refinement of their powder X-ray diffraction patterns show that all compounds are single-phase ternary perovskites which adopt the space group Pbnm (a≈b≈√2ap; c≈2ap; Z=4) at ambient conditions. The unit cell parameters and cell volumes of the compounds increase regularly with increasing values of x. The coordination of the A-site cations changes throughout the series from eight for CaTiO3 to nine for NaTaO3. Compounds with 0?x ?0.4 have A-site cations in eight fold coordination, whereas the coordination of those with 0.4<x<0.9 is ambiguous. Analysis of the crystal chemistry of the compounds shows that the change in coordination at x=0.4 is related to the departure of the B-site cations from the second coordination sphere of the A-site cations, as in compounds with x>0.4 the A-IIO distances become less than the A-B intercation distances. Contemporaneous with these coordination changes, the tilt angles of the BO6 polyhedra decrease with increasing values of x. This solid solution series is unusual in that these structural and coordination changes occur regardless that Goldschmidt tolerance factors remain essentially constant at approximately 0.89, and observed tolerance factors, assuming eight fold coordination of the A-site cations, range only from 0.91 to 0.93 (0?x?0.8).  相似文献   

8.
A series of perovskite phases have been prepared from the appropriate carbonates and oxides by heating under reducing conditions at temperatures up to 1300 °C. Complete ordering between ErO6 and MoO6 octahedra and a disordered distribution of Sr2+ and Ba2+ occur in all compounds. Neutron powder diffraction experiments show that the substitution of Sr2+ into Ba2ErMoO6 introduces a progressive reduction in symmetry from Fm3¯m (x=0) to I4/m (x=0.5, 0.8) to P21/n (x=1.25, 1.75, 2.0). Magnetic susceptibility measurements indicate that all of these compounds show Curie-Weiss paramagnetism and that for x<1.25 this behaviour persists down to 2 K. The monoclinically distorted compounds show magnetic transitions at low temperature and neutron diffraction has confirmed the presence of long-range antiferromagnetic order below 2.5 and 4 K in Ba0.25Sr1.75ErMoO6 and Sr2ErMoO6, respectively. Ba0.75Sr1.25ErMoO6, Ba0.25Sr1.75ErMoO6 and Sr2ErMoO6 do not undergo structural distortion on cooling from room temperature.  相似文献   

9.
The effect of substitution of the cation Cr by Ti in Cr5Te8 has been investigated with respect to its crystal structure, magnetic properties, and electronic structure. The compounds Cr5−xTixTe8 (x=0, 0.5, 1, 1.5, 1.85, 2, 3, 4, 5) were synthesized at elevated temperatures followed by slow cooling the samples to room temperature. The crystal structures have been refined with X-ray powder diffraction data with the Rietveld method. Three structural modifications are identified: monoclinic with space group F2/m for Cr5−xTixTe8 (x=0, 0.5, 1, 1.5, 1.85), trigonal supercell with space group P-3m1 for Cr5−xTixTe8 (x=2, 3), and trigonal basic cell with space group P-3m1 for Cr5−xTixTe8 (x=4, 5). The structures of all these phases are related to the NiAs structure with full and deficient metal layers stacking alternatively along the c-axis.The irreversibility in the field-cooled/zero-field-cooled magnetization with low field depends strongly on the Ti concentration x. Four types of magnetic states are distinguished: re-entrant ferromagnet for m-Cr5Te8, cluster-glass for m-Cr4.5Ti0.5Te8 and m-Cr4TiTe8, antiferromagnetic for m-Cr3.5Ti1.5Te8, and spin-glass for tr-Cr3Ti2Te8, tr-Cr2Ti3Te8, and Cr0.25TiTe2.Accompanying spin polarized scalar-relativistic Korringa-Kohn-Rostoker band-structure calculations strongly support the observation that the crystallographic sites in the full metal layers are preferentially occupied and predict that Ti atoms have the preference to occupy the full metal layers. These compounds are predicted metallic. Results for the spin-resolved DOS and magnetic moments on each crystallographic sites are presented.  相似文献   

10.
The compounds BiMO2NO3, with M=Pb, Ca, Sr, and Ba, were obtained as single-phase products from solid-state reactions in an atmosphere of nitrous gases. The oxide nitrates with Pb and Ca crystallize in the tetragonal space group I4/mmm with two formula units per unit cell; the oxide nitrates with Sr and Ba crystallize in the orthorhombic space group Cmmm with four formula units per unit cell. Lattice parameters at room temperature are a=397.199(4), c=1482.57(2) pm for M=Pb; a=396.337(5), c=1412.83(3) pm for M=Ca; a=1448.76(3), b=567.62(1), c=582.40(1) pm for M=Sr and a=1536.50(8), b=571.67(3), c=597.55(3) pm for M=Ba. The structures, which were refined by powder X-ray diffraction, consist of alternating [BiMO2]+ and [NO3] layers stacked along the direction of the long axis. IR and thermogravimetric data are also given. The various M2+ cations in BiMO2NO3 are compatible with each other; therefore and because of their layer-type structure, these compounds are interesting precursors for oxide materials, e.g., the HTSC compounds (Bi,Pb)2Sr2Can−1CunOx.  相似文献   

11.
Oxypnictides of the type PrOFe1−xCoxAs (x≤0.3) were synthesized for the first time by the sealed tube method. All the compounds were found to be monophasic and crystallize in the tetragonal ZrCuSiAs type structure (space group=P4/nmm) and the lattice parameters (a and c) decrease with increase in cobalt content. Mössbauer measurements of the compounds indicate low spin Fe2+ in tetrahedral coordination. Resistivity and magnetization studies reveal superconducting transitions in compounds with ‘x’=0.05, 0.10 and 0.15, with maximum transition temperature (Tc) at ∼14 K in the compound with ‘x’=0.1. The variation of resistivity with temperature under different magnetic field has been studied to estimate the upper critical field (Hc2) (∼50.2 T for the ‘x’=0.1 composition). The Seebeck and Hall coefficient (RH) suggests electron type charge carriers in these compound and the charge carrier density increases with increase in Co-doping.  相似文献   

12.
The perovskite-type oxides Ba1−xLax(1−y)/2Euxy/2Nax/2TiO3 (0?x?0.5 and xy=0.04) were synthesized and characterized by X-ray diffraction as well as dielectric measurements and Raman spectroscopy. The crystal structure of these ceramics has been determined by the Rietveld refinement powder X-ray diffraction data at room temperature. These compounds crystallize at room temperature in tetragonal space group P4mm for 0?x?0.1 and in the cubic group for 0.2?x?0.5. The phase transition temperature TC (or Tm) decreases as x content increases. The degree of diffuseness of the phase transition is more pronounced for higher x content, implying the existence of a composition-induced diffuse phase transition of the ceramics with x?0.1. The evolution of the Raman spectra was studied as a function of various compositions at room temperature. The polarization state was checked by pyroelectric measurements.  相似文献   

13.
EPR analysis is carried out with Ce1−xGdxO(4−x)/2 (x=0.1; 0.2) nanopowders aiming at obtaining information about their oxidation and reduction properties. The EPR spectrum of these systems is composed of a single feature. The first derivative peak-to-peak spectral intensity decreases at higher temperatures, but this trend deviates from that of Curie's law with the x=0.1 sample, at difference with the x=0.2 sample. This unexpected result is related to oxygen deficiency, due to gas-solid equilibrium, present in the former sample only. As a consequence, some Ce3+ ions would form providing it with conduction electrons propagating as small polarons in a percolative way. This would result in a thinner skin depth at higher temperatures, able to explain the deviation of the spectral intensity from its expected value. Indeed, this deviation from Curie's law is reduced or disappears at all after thermal treatment of the x=0.1 sample with O2.  相似文献   

14.
A series of 25 members of the 1:3 ordered perovskite family of the type Ba4−xSrxNaSb3O12 has been synthesized and their structures determined using synchrotron X-ray and neutron powder diffraction techniques. At room temperature the sample Ba4NaSb3O12 has a cubic structure in space group with a=8.2821(1) Å, where the Na and Sb cations are ordered in the octahedral sites but there is no tilting of the (Na/Sb)O6 octahedra. As the average size of the A-site cation decreases, through the progressive replacement of Ba by Sr, tilting of the octahedra is introduced firstly lowering the symmetry to tetragonal in P4/mnc then to orthorhombic in Cmca and ultimately a monoclinic structure in P21/n as seen for Sr4NaSb3O12 with a=8.0960(2) Å, b=8.0926(2) Å, c=8.1003(1) Å and β=90.016(2)°. The powder neutron diffraction studies show that the orthorhombic and tetragonal phases in Cmca and P4/mnc co-exist at room temperature for samples with x between 1.5 and 2.  相似文献   

15.
The effect of Fe doping on the ferromagnetic Nd0.7Pb0.3Mn1−xFexO3 (x=0, 0.025, 0.05, 0.075, 0.1) phases has been studied in order to analyze the double-exchange interaction. The structural and magnetic study has been carried out by neutron powder diffraction and susceptibility measurements between 1.7 and 300 K. The substitution of Fe at the Mn site results in reductions in both the Curie temperature Tc and the magnetic moment per Mn ion without appreciable differences in the crystal structures. All the compounds crystallize in Pnma space group. The thermal evolution of the lattice parameters of the Nd0.7Pb0.3Mn1−xFexO3 (x=0.025, 0.05, 0.075) compounds shows discontinuities in volume and lattice parameters close to the magnetic transition temperature. Increasing amounts of Fe3+ reduces the double exchange interactions and no magnetic contribution for x=0.1 is observed. The magnetic structures of Nd0.7Pb0.3Mn1−xFexO3 (x=0, 0.025, 0.05, 0.075) compounds show that the Nd and Mn ions are ferromagnetically ordered.  相似文献   

16.
Undoped and Eu2+ or Ce3+-doped SrYSi4N7 were synthesized by solid-state reaction method at 1400-1660 °C under nitrogen/hydrogen atmosphere. The crystal structure was refined from the X-ray powder diffraction data by the Rietveld method. SrYSi4N7 and EuYSi4N7, being isotypic with the family of compounds MYbSi4N7 (M=Sr, Eu, Ba) and BaYSi4N7, crystallize with the hexagonal symmetry: space group P63mc (No. 186), Z=2, a=6.0160 (1) Å, c=9.7894 (1) Å, V=306.83(3) Å3; and a=6.0123 (1) Å, c=9.7869 (1) Å, V=306.37(1) Å3, respectively. Photoluminescence properties have been studied for Sr1−xEuxYSi4N7 (x=0-1) and SrY1−xCexSi4N7 (x=0-0.03) at room temperature. Eu2+-doped SrYSi4N7 shows a broad yellow emission band peaking around 548-570 nm, while Ce3+-doped SrYSi4N7 exhibits a blue emission band with a maximum at about 450 nm. SrYSi4N7:Eu2+ can be very well excited by 390 nm radiation, which makes this material attractive as conversion phosphor for LED lighting applications.  相似文献   

17.
A crystallographic study of the Si/Ge site preferences in the Si-rich regime of Gd5(SixGe1−x)4 and a crystal chemical analysis of these site preferences for the entire range is presented. The room temperature crystal structure of Gd5Si4 as well as four pseudobinary phases, Gd5(SixGe1−x)4 for x?0.6, is reported. All structures are orthorhombic (space group Pnma), Gd5Si4-type and show decreasing volume as the Si concentration increases. Refinements of the site occupancies for the three crystallographic sites for Si/Ge atoms in the asymmetric unit reveal a nonrandom, but still incompletely ordered arrangement of Si and Ge atoms. The distribution of Si and Ge atoms at each site impacts the fractions of possible homonuclear and heteronuclear Si-Si, Si-Ge and Ge-Ge dimers in the various structures. This distribution correlates with the observed room temperature crystal structures for the entire series of Gd5(SixGe1−x)4.  相似文献   

18.
The crystal structures of new quaternary compounds La3AgSnSe7 (space group P63, Pearson symbol hP24, a=1.0805(4) nm, c=0.6245(1) nm, R1=0.0315), La3Ag0.82SnS7 (space group P63, Pearson symbol hP23.64, a=1.0399(1) nm, c=0.6016(1) nm, R1=0.0149) and Ce3Ag0.81SnS7 (space group P63, Pearson symbol hP23.62, a=1.0300(1) nm, c=0.6002(1) nm, R1=0.0151) were determined by means of X-ray single crystal diffraction. Structural investigations of the R3Ag1−δSnS7 (R=La, Ce; δ=0.18-0.19(1)) compounds at 450 and 530 K were performed. Low temperature data (12 K) for Ce3Ag0.81SnS7 were also collected. The nearest neighbours of the La(Ce), Ag and Sn atoms are exclusively Se(S) atoms. The latter form distorted trigonal prisms around the La(Ce) atoms, and distorted tetrahedrons around the Sn atoms. The Ag (Ag1) atoms have triangular surroundings: they are located very close to the planes built of three Se(S) atoms. The Ag2 atoms in the structures of the La3Ag0.82SnS7, Ce3Ag0.81SnS7 compounds are located practically in the centres of trigonal antiprisms. The pseudo-potentials determined through the Ag atoms show relatively low barrier between two nearest positions which decreases when temperature rises.  相似文献   

19.
The (Ca1-2xNaxLax)TiO3 (0?x?0.5) A-site substituted perovskite compounds have been synthesized and characterized by XRD and Raman spectroscopy at room temperature. The XRD powder diffraction study suggests that the end-member Na1/2La1/2TiO3 crystallizes in the tetragonal space group I4/mcm. The phase transition from Pbnm to I4/mcm is located between x=0.34 and 0.39 and is driven by the variation of ionic radii at the A-site. The observed Raman modes are in agreement with group theory analysis, and the relationships between the behavior of structural parameters (e.g. Ti-O-Ti bond angle), indicated by long-range order, and the corresponding Raman frequency shifts and intensity evolution, indicated by short-range order, are established and discussed in terms of the radius effect and the mass effect.  相似文献   

20.
The microstructure and phase stability of nanocrystalline mixed oxide LuxCe1−xO2−y (x=0-1) are described. Nano-sized (3-4 nm) oxide particles were prepared by the reverse microemulsion method. Morphological and structural changes upon heat treatment in an oxidizing atmosphere were studied by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman and Yb3+ emission spectroscopy, the latter ion being present as an impurity in the Lu2O3 starting material. Up to 950 °C, the samples were single phase, with structure changing smoothly with Lu content from fluorite type (F) to bixbyite type (C). For the samples heated at 1100 °C phase separation into coexisting F- and C-type structures was observed for 0.35<x<0.7. It was also found that addition of Lu strongly hinders the crystallite growth of ceria during heat treatment at 800 and 950 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号