首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
电化学DNA生物传感器*   总被引:1,自引:0,他引:1  
张炯  万莹  王丽华  宋世平  樊春海 《化学进展》2007,19(10):1576-1584
对特异DNA序列的检测在基因相关疾病的诊断、军事反恐和环境监测等方面均具有非常重要的意义,DNA传感器的研究就是为了满足对特异DNA序列的快速、便捷、高灵敏度和高选择性检测的需要。近年来涌现出了多种传感策略,根据检测方法的不同可以大致分为光学传感器、电化学传感器、声学传感器等。由于电化学检测方法本身所具有的灵敏、快速、低成本和低能耗等特点,电化学DNA传感器已成为一个非常活跃的研究领域并在近几年中得到了快速发展。本文概括了近年来在DNA传感器的重要分支——电化学DNA传感器领域内的一些重要进展,主要包括DNA探针在传感界面上的固定方法和各种电化学DNA杂交信号的检测方法。  相似文献   

2.
彭芳  朱德荣  司士辉  肖辉 《化学进展》2008,20(4):586-593
光电化学型半导体生物传感器是一种利用半导体的光电特性来检测与光生电流或光生电压相关的待测物质浓度及生化过程参数的分析新技术。随着新兴半导体功能材料及相关加工技术的不断涌现,光电化学型半导体生物传感器已在微型化、集成化、多点及多参数测量方面显现出优势、有望在复杂体系中实现在线高灵敏、快速测定,在生物、医药、环境监测、食品等领域显示出广阔的应用前景。本文主要介绍了光电化学型半导体传感器的基本原理、特点及近几年的研究进展,并对其发展前景做了展望。  相似文献   

3.
纳米电化学生物传感器   总被引:4,自引:0,他引:4  
纳米电化学生物传感器是将纳米材料作为一种新型的生物传感介质,与特异性分子识别物质如酶、抗原/抗体、DNA等相结合,并以电化学信号为检测信号的分析器件。本文简要介绍了生物传感器的分类和纳米材料在电化学生物传感器中的应用及其优势,综述了近年来各类纳米电化学生物传感器在生物检测方面的研究进展,包括纳米颗粒生物传感器,纳米管、纳米棒、纳米纤维与纳米线生物传感器,以及纳米片与纳米阵列生物传感器等。  相似文献   

4.
吴宝璋 《化学通报》1991,(1):48-50,60
标准氧化还原电位 E~(0′)和电子转移化学计量数 n 的测定是生物氧化还原体系研究中的一个重要方面.由于许多生物分子会在电极上吸附,有些蛋白分子的氧化还原中心位于蛋白结构的内部,它们同电极的异相电子转移过程很不可逆或非常缓慢,因而难于用常规的电化学方法进行 E_(0′)和 n 值的测量。近年来薄层电化学技术的发展为这方面的研究打开了方便之门,本文简要介绍其原理及应用。  相似文献   

5.
MicroRNA(miRNA)是一种内源性的非编码单链RNA,通过与mRNA的3'端非翻译区(UTR)的不完全互补或完全互补结合抑制靶mRNA的翻译或促使靶mRNA的降解来调控基因的表达,参与细胞的增殖、凋亡、分化和代谢等重要过程。MiRNA表达的变化可以起到癌基因和抑癌基因的作用,是一种潜在的肿瘤标志物,因此,miRNA的检测技术引起了人们的关注。由于电化学检测方法具有灵敏、快速、低成本和低能耗等特点,研究者广泛开展了应用电化学技术来发展miRNA检测的研究。本文将对基于电化学技术的miRNA检测方法进行综述。  相似文献   

6.
电荷传递是生命运动的基本过程之一,电化学方法在生命科学中的应用为相关生命现象的研究提供了一个有效而独特的物理化学视角,并带来超出常规生物学检测的丰富信息.随着生物电化学研究的不断扩展和深化,已从早期的生物分子电化学研究深入向活体、活细胞、单活细胞水平甚至活细胞中单分子水平发展.研究者对仪器设备性能如灵敏度、分辨率(时间分辨、空间分辨和能量分辨)和操作性等提出了越来越高的要求.本文综述了生物电化学仪器在应用领域和研究领域的现状,重点介绍单细胞电化学检测系统的构建,并初步探讨国内生物电化学研究仪器的发展趋势.  相似文献   

7.
酶直接电化学与第三代生物传感器   总被引:10,自引:0,他引:10  
池其金  董绍俊 《分析化学》1994,22(10):1065-1072
本文详细地评述并展望了酶直接电化学与第三代生物传感器这个领域已取得的成果,主要内容涉及生物电催化的三个发展阶段,实现酶与电极之间的直接电子转移方法和相应机理、以及第三代酶传感器的研制。  相似文献   

8.
9.
适配体电化学生物传感器研究进展   总被引:3,自引:0,他引:3  
由于制备简便、易修饰、稳定性好和结合目标物范围广等特点,基于适配体的生物传感器研究工作一直得到广大科研工作者的关注.本文在阐述适配体基本原理的基础之上,结合近年来电化学适配体生物传感器研究领域的最新研究成果,对电化学技术在适配体生物传感器研究领域中的最新进展作一综述与展望.  相似文献   

10.
就1993-2005年生物胺类神经递质包括多巴胺、肾上腺素、去甲肾上腺素、5-羟色胺的各种电化学检测方法的应用研究和发展方向进行了评述。引用文献58篇。  相似文献   

11.
纳米材料在电化学生物传感器中的应用   总被引:2,自引:0,他引:2  
纳米材料因其具有独特的性质,被广泛应用于研制和发展具有超高灵敏度、超高选择性的电化学生物传感器.本文总结了纳米材料在电化学生物传感系统中的主要功能,介绍了近年来国内外基于纳米材料构建的电化学生物传感器的研究进展,并对该领域的发展前景做出了展望.  相似文献   

12.
电化学生物传感器在农药检测中的应用   总被引:7,自引:0,他引:7  
农药包括杀虫剂、杀菌剂、除草剂等,在种植业、养殖业、园林业等领域中有着广泛的应用。全球快速增长的农药使用量给环境、人的身体健康带来了潜在的危害。农药的种类繁多(多达几千种),结构各异,并且在样品中的含量极低(但毒性可能高)。针对这一问题,欧盟提出60多种使用量较大,  相似文献   

13.
对聚合物材料在生物电化学传顺中的应用进行了评述,包括高分子媒介体化合物、高分子阻挡膜、酶固定化材料和电解聚合物材料。并指出今后提高生物电化学传感器性能、改善和改变其表面特性,也依赖于聚合物材料的应用。  相似文献   

14.
乙酰胆碱/胆碱电化学生物传感器研究进展   总被引:5,自引:0,他引:5  
本文综述了近年来乙酰胆碱/胆碱电化学生物传感器的研究状况及其在分析化学中的应用进展。  相似文献   

15.
光电化学生物分析是近年来新出现并发展迅速的一种分析技术,其检测原理是基于在光照下识别元件和目标分子之间的生物识别作用造成光电活性物质产生的电信号的改变,以实现对待测物的定量测定。由于其灵敏选择性检测的优点及其在生物分析中的巨大潜力,该方法吸引了较多的关注,并且在检测性能和生物传感应用等方面也取得了较大进步。本文针对光电化学生物分析中常见的四种应用领域,即直接光电化学检测、光电化学酶检测、光电化学核酸检测以及光电化学免疫分析,综述了近年来国内外在光电化学生物分析研究领域的最新进展,并对其未来发展进行了展望。  相似文献   

16.
特定序列脱氧核糖核酸电化学生物传感器进展   总被引:16,自引:0,他引:16  
杨丽菊  彭图治 《分析化学》2001,29(3):355-360
对当今电分析化学中的研究热点之一-脱氧核糖核酸(DNA)的电化学生物传感技术的最新进展进行了综述,评述了其发展前景。  相似文献   

17.
聚吡咯葡萄糖氧化酶电极的生物电化学响应   总被引:2,自引:0,他引:2  
采用分步骤合过程,制备了以聚吡咯膜为载体的葡萄糖氧化酶电极,探讨了其生物电化学响应特性,计算了酶催化反应的有关动力学参数。与溶解态酶相比,该电极表现出良好的生物电化学特征,而且酶蛋白对溶液温度的稳定性有显著提高。  相似文献   

18.
DNA的电化学研究   总被引:12,自引:0,他引:12  
本文对DNA与电极的相互作用,DNA的电化学反应,DNA与其它分子相互作用的电化学研究和DNA的电化学分析等方面的研究进展作了归纳和评述。  相似文献   

19.
石墨烯是一种具有单原子厚度的二维碳纳米材料,具有大的比表面积、高的导电性和室温电子迁移率,以及优异的机械力学性能.石墨烯还具有电化学窗口宽,电化学稳定性好,电荷传递电阻小,电催化活性高和电子转移速率快等电化学特性.化学修饰石墨烯,特别是氧化石墨烯(GO)和还原氧化石墨烯(rGO),可以被宏量、廉价地制备出来.它们具有可加工性能,可以被组装、加工或复合成具有可控组成和微结构的宏观电极材料.因此,石墨烯及其化学修饰衍生物是用于电化学生物传感的独特而诱人的电极材料.例如,GO是一种化学修饰石墨烯,也是石墨烯的重要前驱体;其边缘具有大量的羧基可用于共价固定酶,从而能实现酶电极的生物检测.在GO上的不可逆蛋白吸附也可以促进蛋白质的直接电子转移以提高其电化学检测性能.但是,GO大量的含氧官能团破坏了石墨烯本征的共轭结构,降低了其电学性能并限制了其实际应用.GO可以通过化学、电化学、热还原等技术转化成rGO,从而能部分修复其共轭结构,提高其导电性与传感性能.另一方面,石墨烯是一种零带隙材料;原子掺杂可以调控其能带结构,提高其电催化性能.石墨烯材料也常常需要通过与其它功能材料的复合进一步改善其可分散与可加工性能,提高其电催化活性和电化学选择性.本文综述了本征石墨烯(包括GO,rGO和掺杂石墨烯)以及石墨烯与生物分子、高分子、离子液体、金属或金属氧化物纳米粒子等复合材料修饰电极在检测各种生物分子方面的研究进展,并对该研究领域进行了展望.  相似文献   

20.
制备了ITO/Gr/CH_3NH_3PbI_3/CS/GOx电极,将制得的电极浸入5.0mL的0.1mol·L~(-1) PBS(pH 7.0)中,加入丁草胺标准溶液,保持10min,然后将电极取出插入含有0.8mmol·L~(-1)葡萄糖的0.1mol·L~(-1) PBS(pH 7.0)中,测量光电流(I)。另做空白试验(操作同上,但不存在丁草胺),测量光电流(I_0)。由(I_0-I)/I_0×100计算丁草胺对光电流的抑制率。结果表明,抑制率与丁草胺的浓度在0.02~10.0nmol·L~(-1)内呈线性关系,检出限(3S/N)为0.005nmol·L~(-1)。方法用于测定蔬菜和水果空白加标样品中的丁草胺,测定值与气相色谱-质谱法的测定结果一致,测定值的相对标准偏差(n=6)在1.8%~4.7%之间,加标回收率在93.3%~102%之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号