首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results of patterning of the indium-tin oxide (ITO) film on the glass substrate with high repetition rate picosecond lasers at various wavelengths are presented. Laser radiation initiated the ablation of the material, forming grooves in ITO. Profile of the grooves was analyzed with a phase contrast optical microscope, a stylus type profiler, scanning electron microscope (SEM) and atomic force microscope (AFM). Clean removal of the ITO film was achieved with the 266 nm radiation when laser fluence was above the threshold at 0.20 J/cm2, while for the 355 nm radiation, the threshold was higher, above 0.46 J/cm2. The glass substrate was damaged in the area where the fluence was higher than 1.55 J/cm2. The 532 nm radiation allowed getting well defined grooves, but a lot of residues in the form of dust were generated on the surface. UV radiation with the 266 nm wavelength provided the widest working window for ITO ablation without damage of the substrate. Use of UV laser radiation with fluences close to the ablation threshold made it possible to minimize surface contamination and the recast ridge formation during the process.  相似文献   

2.
Femtosecond laser (180 fs, 775 nm, 1 kHz) ablation characteristics of the nickel-based superalloy C263 are investigated. The single pulse ablation threshold is measured to be 0.26±0.03 J/cm2 and the incubation parameter ξ=0.72±0.03 by also measuring the dependence of ablation threshold on the number of laser pulses. The ablation rate exhibits two logarithmic dependencies on fluence corresponding to ablation determined by the optical penetration depth at fluences below ∼5 J/cm2 (for single pulse) and by the electron thermal diffusion length above that fluence. The central surface morphology of ablated craters (dimples) with laser fluence and number of laser pulses shows the development of several kinds of periodic structures (ripples) with different periodicities as well as the formation of resolidified material and holes at the centre of the ablated crater at high fluences. The debris produced during ablation consists of crystalline C263 oxidized nanoparticles with diameters of ∼2–20 nm (for F=9.6 J/cm2). The mechanisms involved in femtosecond laser microprocessing of the superalloy C263 as well as in the synthesis of C263 nanoparticles are elucidated and discussed in terms of the properties of the material.  相似文献   

3.
Pulsed laser deposited mixed hydroxyapatite (HA)/calcium phosphate thin films were prepared at room temperature using KrF laser source with different laser fluence varying between 2.4 J/cm2 and 29.2 J/cm2. Samples deposited at 2.4 J/cm2 were partially amorphous and had rough surfaces with a lot of droplets while higher laser fluences showed higher level of crytallinity and lower roughness of surfaces of obtained samples. Higher laser fluences also decreased ratio Ca/P of as-deposited samples. X-ray photoelectron spectroscopy (XPS) revealed traces of carbonate groups in obtained samples, which were removed after thermal annealing. The decomposition of HA into TCP was observed to start at about 400 °C. The formation of new crystalline phase of HA was found after annealing as well. The cracks observed on surface of sample deposited at 29.2 J/cm2 after annealing indicated that the HA/ calcium phosphate films deposited at higher laser energy densities were probably more densed.  相似文献   

4.
Interdiffusion phenomena, thermal damage and ablation of W/Si and Si/W bilayers and multilayers under XeCl-excimer laser (=308 nm) irradiation at fluences of 0.15, 0.3 and 0.6 J/cm2 were studied. Samples were prepared by UHV e-beam evaporation onto oxidized Si. The thickness of W and Si layers and the total thickness of the structures were 1–20 nm and 40–100 nm, respectively. 1 to 300 laser pulses were directed to the same irradiation site. At 0.6 J/cm2 the samples were damaged even by a single laser pulse. At 0.3 J/cm2 WSi2 silicide formation, surface roughening and ablation were observed. The threshold for significant changes depends on the number of pulses: it was between 3–10 pulses and 10–30 pulses for bilayers with W and Si surfaces, respectively, and more than 100 pulses for multilayers with the same total thickness of tungsten. At 0.15 J/cm2 the periodicity of the multilayers was preserved. Temperature profiles in layered structures were obtained by numerical simulations. The observed differences of the resistance of various bilayers and multilayers against UV irradiation are discussed.  相似文献   

5.
Lead-niobium-germanate planar waveguides have been produced by pulsed laser deposition. The composition of the waveguides is found to be relatively weakly dependent on the laser fluence, while their surface morphology is affected dramatically. Smooth surfaces are obtained for a narrow fluence range centered at 2.0 J/cm2, while particulates having typical diameters of <0.5 μm or droplets with typical diameters of <10 μm are observed at lower and higher fluences, respectively. The refractive index of the waveguides increases with fluence up to 2.1 at 2.0 J/cm2, which is close to the value of the bulk glass, and remains constant at higher fluences. Propagation losses show instead a minimum (≈6.5 dB/cm) at 2.0 J/cm2. The characteristics of the ablation process that leads to the ejection of solid particulates or molten droplets as well as the increase of the waveguides density on increasing the fluence are discussed to be responsible for the observed optical behavior.  相似文献   

6.
Radiation from the UV excimer lasers, with the fluence above the ablation threshold, can etch the polymer surfaces by photoablation. In some cases different microstructures may appear on the surface during the laser ablation. In this paper the effect of the laser spot size on the cone formation on polyethersulfone films has been investigated. The experiments have been performed with a XeCl laser at the wavelength of 308 nm and at the fluences of 70 and 100 mJ/cm2 at air. For the investigation of the effect of the laser spot size on cone formation, the samples were irradiated at two different laser spot sizes of w1 and w2 = 0.1 w1. The morphology of the processed surface was studied by scanning electron microscopy (SEM). It has shown that the shape, size and density of cones change with the change of the laser spot size. Also, the number of pulses and the pulse repetition rate which are needed for threshold of cone formation are affected by the laser beam spot size on the surface.  相似文献   

7.
Although the cariostatic effects of CO2 laser on enamel have been shown, its effects on root surface demineralization remains uncertain. The objectives of this in vitro research was to establish safe parameters for a pulsed 10.6 μm CO2 laser and to evaluate its effect on morphological features of the root surface, as well as on the reduction of root demineralization. Ninety-five human root surfaces were randomly divided into five groups: G1-No treatment (control); G2—2.5 J/cm2; G3—4.0 J/cm2; G4—5.0 J/cm2; and G5—6.0 J/cm2. Intrapulpal temperature was evaluated during root surface irradiation by a thermocouple and morphological changes were evaluated by SEM. After the surface treatment, the specimens were submitted to a 7-day pH-cycling model. Subsequently, the cross-sectional Knoop microhardness values were measured. For all irradiated groups, intrapulpal temperature changes were less than 1.5°C. Scanning electron microscopy images indicated that fluences as low as 4.0 J/cm2 were sufficient to induce morphological changes in the root surface. Additionally, for fluences reaching or exceeding 4.0 J/cm2, laser-induced inhibitory effects on root surface demineralization were observed. It was concluded that laser energy density in the range of 4.0 to 6.0 J/cm2 could be applied to a dental root to reduce demineralization of this surface without compromising pulp vitality.  相似文献   

8.
The effect of sub-nanosecond fluence fluctuations and triggering on time-resolved laser-induced incandescence (LII) from soot has been studied using an injection-seeded pulsed Nd:YAG laser that produces a smooth laser temporal profile. Without injection seeding, this multi-mode laser generates pulses with large intensity fluctuations with sub-nanosecond rise times. The experimental results described here demonstrate that at fluences below 0.6 J/cm2 LII signals are insensitive to fluence fluctuations on nanosecond time scales. At fluences above 0.6 J/cm2 fluctuations in the laser profile cause the rising edge of the LII profile to move around in time relative to the center of the laser pulse causing a broader average profile that shifts to earlier times. Such fluctuations also lead to a decrease in the average LII temporal profile by up to 12% at a fluence of 3.5 J/cm2. A timing jitter on the trigger of the data acquisition, such as that produced by triggering on the laser Q-switch synchronization pulse, has a negligible effect on the shape and temporal maximum of the LII signal. Additional jitter, however, considerably reduces the peak of the LII temporal profiles at fluences as low as 0.15 J/cm2. Neither fast fluence fluctuations nor trigger jitter have a significant effect on gated LII signals, such as those used to infer soot volume fraction.  相似文献   

9.
The evolution of the deposition rate during pulsed laser deposition of hydroxyapatite coatings with a KrF excimer laser was studied. This evolution was related to the changes produced on the target morphology during laser irradiation. Laser fluences in the 1.0–5.2 J/cm2 range, typical for the deposition of hydroxyapatite coatings, were investigated. Deposition rates were measured through a quartz-crystal microbalance, and the target surface was observed by scanning electron microscopy. At the lowest fluences, the deposition rate decreases as the number of pulses increases. At the same time, a cone structure is developed on the target surface. At the highest fluences, the deposition rate increases with the number of pulses. In this case, the target surface becomes rough but cones are not formed. In all cases, an enlargement of the effective irradiated area results. This enlargement produces the effect of fluence dilution and also an increase of the emitting area. These opposite effects could account for the different evolutions found for the deposition rate. At low fluences the effect of fluence dilution would predominate over the increase of the emitting area, and at high fluences the second effect would predominate over the first. Received: 28 September 2000 / Accepted: 4 October 2000 / Published online: 10 January 2001  相似文献   

10.
In this paper the surface topography of titanium samples irradiated by femtosecond laser pulses is described. When the fluence is about 0.5 J/cm2 periodic ripples with a period of about 700 nm are formed. For fluences between 0.5 and 2 J/cm2, a microcolumnar surface texture develops in the center of the irradiated spots and ripples are formed in the periphery of the spots. When experiments are performed with a non-stationary sample, the microcolumns exhibit ripples similar to those observed when the radiation fluence is about 0.5 J/cm2 and in the outer regions of the irradiated areas for fluences between 0.5 and 2 J/cm2. Since the energy distribution in the transverse cross-section of the laser beam is Gaussian, we conclude that the ripples form when the microcolumns are subjected to fluences near the melting threshold of the material at the trailing edge of the moving laser beam.  相似文献   

11.
The development of laser techniques for the deposition of polymer and biomaterial thin films on solid surfaces in a controlled manner has attracted great attention during the last few years. Here we report the deposition of thin polymer films, namely Polyepichlorhydrin by pulsed laser deposition. Polyepichlorhydrin polymer was deposited on flat substrate (i.e. silicon) using an NdYAG laser (266 nm, 5 ns pulse duration and 10 Hz repetition rate).The obtained thin films have been characterized by atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and spectroscopic ellipsometry.It was found that for laser fluences up to 1.5 J/cm2 the chemical structure of the deposited polyepichlorhydrin polymer thin layers resembles to the native polymer, whilst by increasing the laser fluence above 1.5 J/cm2 the polyepichlorohydrin films present deviations from the bulk polymer.Morphological investigations (atomic force microscopy and scanning electron microscopy) reveal continuous polyepichlorhydrin thin films for a relatively narrow range of fluences (1-1.5 J/cm2).The wavelength dependence of the refractive index and extinction coefficient was determined by ellipsometry studies which lead to new insights about the material.The obtained results indicate that pulsed laser deposition method is potentially useful for the fabrication of polymer thin films to be used in applications including electronics, microsensor or bioengineering industries.  相似文献   

12.
Laser fragmentation of Ag nanoparticles in Ag hydrosol was studied by simultaneous measurements of the transmitted fluence of the incident laser beam and the time evolution of the surface plasmon extinction (SPE) spectra. The experiments showed that the laser fragmentation in a small volume of hydrosol proceeds during first 20 pulses and then reaches saturation. The value of the transmitted fluence corresponding to saturation increases with incident pulse fluence, but the impact of the first pulse applied to the hydrosols shows an optical limitation. Fluences above 303 mJ/cm2 cause the formation of less stable, aggregating nanoparticles, while fluences below 90 mJ/cm2 do not provide sufficient energy for efficient fragmentation. The interval of fluences between 90–303 mJ/cm2 is optimal for fragmentation, since stable hydrosols constituted by small, non-aggregated nanoparticles are formed.  相似文献   

13.
Picosecond laser (10.4 ps, 1064 nm) ablation of the nickel-based superalloy C263 is investigated at different pulse repetition rates (5, 10, 20, and 50 kHz). The two ablation regimes corresponding to ablation dominated by the optical penetration depth at low fluences and of the electron thermal diffusion length at high fluences are clearly identified from the change of the surface morphology of single pulse ablated craters (dimples) with fluence. The two corresponding thresholds were measured as F th(D1)1=0.68±0.02 J/cm2 and F th(D2)1=2.64±0.27 J/cm2 from data of the crater diameters D 1,2 versus peak fluence. The surface morphology of macroscopic areas processed with a scanning laser beam at different fluences is characterised by ripples at low fluences. As the fluence increases, randomly distributed areas among the ripples are formed which appear featureless due to melting and joining of the ripples while at high fluences the whole irradiated surface becomes grainy due to melting, splashing of the melt and subsequent resolidification. The throughput of ablation becomes maximal when machining at high pulse repetition rates and with a relatively low fluence, while at the same time the surface roughness is kept low.  相似文献   

14.
3 N4 has been investigated. The ablation threshold in air, Φth, is around 0.3±0.1 J/cm2 with ArF- and 0.9±0.2 J/cm2 with KrF-laser radiation. With fluences Φth<Φ<4 J/cm2 the irradiated surface is either very flat or it exhibits a cone-type structure, depending on the number of laser pulses employed. With fluences of 5 to 10 J/cm2, the sample surface becomes very smooth, much smoother than the original mechanically polished surface. Pores, scratches, and cracks observed on the non-irradiated surface are absent within the illuminated area. In this regime, the ablation rates are typically 0.1 to 0.2 μm/pulse. Received: 10 April 1997/Accepted: 11 April 1997  相似文献   

15.
We report a study of the formation of tungsten silicide at the W-Si interface, induced by multipulse (up to 300 shots) XeCl excimer-laser irradiation of W(150 nm)/Si and W(500 nm)/Si samples. Laser fluences ranging from 0.6 to 1.8 J/cm2 were used. After laser treatment the samples were examined by different diagnostic techniques: Rutherford backscattering spectrometry, X-ray scattering, resistometry, and surface profilometry. Numerical computations of the evolution and depth profiles of the temperature in the samples as a consequence of a single 30 ns laser pulse were performed as well. The results indicate that it is possible to obtain a tungsten silicide layer at the W-Si interface at quite low fluences. The layer thickness increases with the number of laser pulses. Complete reaction of the 150 nm thick W film with silicon was obtained at the fluence of 1.2 J/cm2 between 30 and 100 laser pulses and at 1.5 J/cm2 after 30 laser pulses. The sheet resistance of these silicides was 5–10 . At the used fluences for the 500 nm thick W film only the onset of silicide synthesis at the W-Si interface was observed.  相似文献   

16.
The post-growth modification of diamond-like amorphous hydrogenated carbon a-C:H films by laser treatment has been studied by transmission electron microscopy and Raman spectroscopy. a-C:H films grown on Si substrates by benzene decomposition in a rf glow discharge were irradiated with 15 ns pulses of a KrF-excimer laser with fluences in the range of E=50–700 mJ/cm2. At fluences below 100 mJ/cm2 an increase in the number of graphitic clusters and in their ordering was evidenced from Raman spectra, while the film structure remained amorphous according to electron microscopy and electron diffraction observations. At higher fluences the appearance of diamond particles of 2–7 nm size, embedded into the lower crystallized graphitic matrix, was observed and simultaneously a progressive growth of graphite nanocrystals with dimensions from 2 nm to 4 nm was deduced from Raman measurements. The maximum thickness of the crystallized surface layer (400 nm) and the degree of laser annealing are limited by the film ablation which starts at E>250 mJ/cm2. The laser-treated areas lose their chemical inertness. In particular, chemical etching in chromium acid becomes possible, which may be used for patterning the highly inert carbon films.  相似文献   

17.
High purity alumina ceramics (99% Al2O3) was implanted by copper ion and titanium ion in a metal vapour vacuum arc (MEVVA) implanter, respectively. The influence of implantation parameters was studied varying ion fluence. The samples were implanted by 68 keV Cu ion and 82 keV Ti ion with fluences from 1 × 1015 to 1 × 1018 ions/cm2, respectively. The as-implanted samples were investigated by scanning electron microscopy (SEM), glancing X-ray diffraction (GXRD), scanning Auger microscopy (SAM), and four-probe method. Different morphologies were observed on the surfaces of the as-implanted samples and clearly related to implantation parameters. For both ion implantations, the sheet resistances of the alumina samples implanted with Cu and Ti ion fluences of 1 × 1018 ions/cm2, respectively, reached the corresponding minimum values because of the surface metallization. The experimental results indicate that the high-fluence ion implantation resulted in conductive layer on the surface of the as-implanted high purity alumina ceramics.  相似文献   

18.
Thin films of fullerenes (C60) were deposited onto silicon using matrix-assisted pulsed laser evaporation (MAPLE). The deposition was carried out from a frozen homogeneous dilute solution of C60 in anisole (0.67 wt%), and over a broad range of laser fluences, from 0.15 J/cm2 up to 3.9 J/cm2. MAPLE has been applied for deposition of fullerenes for the first time and we have studied the growth of thin films of solid C60. The fragmentation of C60 fullerene molecules induced by ns ablation in vacuum of a frozen anisole target with C60 was investigated by matrix-assisted laser desorption/ionization (MALDI). Our findings show that intact fullerene films can be produced with laser fluences ranging from 0.15 J/cm2 up to 1.5 J/cm2.  相似文献   

19.
An InP wafer was irradiated in air by a series of UV pulses from a nitrogen laser with fluences of 120 mJ/cm2 and 80 mJ/cm2. These fluences are below the single-pulse ablation threshold of InP. Over the studied region the distribution of the radiation intensity was uniform. The number of pulses varied from 50 to 6000. The evolution of the surface morphology and structure was characterized by atomic force microscopy, optical microscopy and Raman spectroscopy. The relationship between mound size and the number of pulses starts out following a power law, but saturates for a sufficiently high number of pulses. The crossover point is a function of fluence. A similar relation exists for the surface roughness. Raman spectroscopic investigations showed little change in local crystalline structure of the processed surface layer.  相似文献   

20.
In the present paper, a 2D finite element model based on the heat-conduction equation and on the Hertz-Knudsen equation for vaporization was developed and used to simulate the ablation of TiC by Nd:YAG and KrF pulsed laser radiation. The calculations were performed for fluences of 8 and 10 J/cm2, which according to experimental results obtained previously, correspond to large increases of the ablation rate. The calculated maximum surface temperature of the target for both lasers is higher than the estimated value of TiC critical temperature, corroborating the hypothesis that the increase of the ablation rate is explained by the explosive boiling mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号