首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A pulsed jet with a period of no flow between pulses (i.e., a fully pulsed jet) produces a multiplicity of vortex rings whose characteristics are determined by the jet pulsing parameters. The present study analyzes the case of impulsively initiated and terminated jet pulses in the limit of equal pulse duration and period to determine the minimum possible vortex ring separation obtainable from a fully pulsed jet. The downstream character of the flow is modeled as an infinite train of thin, coaxial vortex rings. Assuming inviscid flow and matching the circulation, impulse, kinetic energy, and frequency of the jet and vortex ring train allow the properties of the vortex ring train to be determined in terms of the ratio of jet slug length-to-diameter ratio (L/D) used for each pulse. The results show the minimum ring separation may be made arbitrarily small as L/D is decreased and the corresponding total ring velocity remains close to half the jet velocity for L/D < 4, but the thin-ring assumption is violated for L/D > 1.5. The results are discussed in the context of models of pulsed-jet propulsion.  相似文献   

2.
This paper deals with the adaptive control problem of the unforced generalized Korteweg?Cde Vries?CBurgers (GKdVB) equation when the spatial domain is [0,1]. Three adaptive control laws are designed for the GKdVB equation when either the kinematic viscosity ?? or the dynamic viscosity ?? is unknown, or when both viscosities ?? and ?? are unknowns. Using the Lyapunov theory, the L 2-global exponential stability of the solutions of this equation is shown for each of the proposed control laws. Also, numerical simulations based on the Finite Element method (FEM) are given to illustrate the analytical results.  相似文献   

3.
This paper reports an experimental investigation on the wake of a blunt-based, flat plate subjected to aerodynamic flow vectoring using asymmetric synthetic jet actuation. Wake vectoring was achieved using a synthetic jet placed at the model base 2.5?mm from the upper corner. The wake Reynolds number based on the plate thickness was 7,200. The synthetic jet actuation frequency was selected to be about 75?% the vortex shedding frequency of the natural wake. At this actuation frequency, the synthetic jet delivered a periodic flow with a momentum coefficient, C ??, of up to 62?%. Simultaneous measurements of the streamwise and transverse components of the velocity were performed using particle image velocimetry (PIV) in the near wake. The results suggested that for significant wake vectoring, vortex shedding must be suppressed first. Under the flow conditions cited above, C ?? values in the range of 10?C20?% were required. The wake vectoring angle seemed to asymptote to a constant value of about 30° at downstream distances, x/h, larger than 4 for C ?? values ranging between 24 and 64?%. The phase-averaged vorticity contours and the phase-averaged normal lift force showed that most of the wake vectoring is produced during the suction phase of the actuation, while the blowing phase was mostly responsible for vortex shedding suppression.  相似文献   

4.
We give a new derivation, based on the complementary energy formulation, of a simplified model for a multi-structure made up of two anisotropic hyper-elastic bodies connected by a thin strong material layer. The model is obtained by identifying the Mosco-limit of the stored complementary energy functional when the thickness is of order ?? and the stiffness of order 1/?? where ?? is a positive real adimensional parameter. In order to prove the existence of the displacement associated with the stress we use a suitable weak version of the Saint-Venant compatibility condition also known as Donati??s theorem.  相似文献   

5.
An experimental study was carried out on the mean aerodynamic and heat-exchange characteristics of a weaklyheated air jet flowing over an isothermal and an insulating flat surface. The jet issued from a contracting profiled rectangular nozzle (39×22 m2 outlet) at 30 m/sec velocity (Re d =~5.5×104) and incidence angle α0, π/12, π/6, π/4. It was established that as α0 increases, so do the decay rates of the axial velocity and temperature along the jet axis as well as the jet width, while the jet thickness decreases. Parallel examination of an in sulating and an isothermal surface permitted separation of the heat-exchange process between the jet and the surrounding medium, from that between the jet and the wall surface-with the conclusion tha tin the isothermal case, the exchange with the surface intensifies as α0 increases.  相似文献   

6.
We prove that every weak solution u to the 3D Navier–Stokes equation that belongs to the class L 3 L 9/2 and ?u belongs to L 3 L 9/5 locally away from a 1/2-Hölder continuous curve in time satisfies the generalized energy equality. In particular every such solution is suitable.  相似文献   

7.
A unified analysis is presented for the elastic response of a pressurized cylindrically anisotropic hollow disk under assumed conditions of plane stress, or a hollow cylinder under plane strain conditions, and a spherically anisotropic hollow sphere, made of material which is nonuniform in the radial direction according to the power law relationship. The solution for a cylinder under generalized plane strain is also presented. Two parameters play a prominent role in the analysis: the material nonuniformity parameter m, and the parameter ?? which accounts for the combined effects of material anisotropy, represented by the specified parameters (??, ??, ??), and material nonuniformity, represented by the parameter m. The radial and circumferential stresses are the linear combinations of two power functions of the radial coordinate, whose exponents (n 1 and n 2) depend on the parameters m and ??. New light is added to the stress amplification and shielding under combined effects of curvilinear anisotropy and radial nonuniformity. Different loading combinations are considered, including the equal pressure at both boundaries, and the uniform pressure at the inner or the outer boundary. While the stress state for the equal pressure loading is uniform in the case of isotropic uniform material (m=0, ??=1), and for one particular radially nonuniform and anisotropic material, it is strongly nonuniform for a general anisotropic or nonuniform material. If the aspect ratio of the inner and outer radii decreases (small hole in a large disk/cylinder or sphere), the magnitude of the circumferential stress at the inner radius increases for n 1>0 (stress amplification), and decreases for n 1<0 (stress shielding). Both can be achieved by various combinations of the material parameters m, ??, ??, and ??. While the stress amplification in the case of a pressurized external boundary occurs readily, it occurs only exceptionally in the case of a pressurized internal boundary. The effects of material parameters on the displacement response are also analyzed. The approximate character of the plane stress solution of a pressurized thin disk is discussed and the results are compared with those obtained by numerical solution of the exact three-dimensional disk model.  相似文献   

8.
Round air jet development downstream from an abrupt contraction coupled to a uniform circular tube extension with length to diameter ratio L/D?=?1.2 and L/D?=?53.2 is studied experimentally. Smoke visualisation and systematic hot film velocity measurements are performed for low to moderate Reynolds numbers 1130?<?Re b ?<?11320. Mean and turbulent velocity profiles are quantified at the tube exit and along the centerline from the tube exit down to 20 times the diameter D. Flow development is seen to be determined by the underlying jet structure at the tube exit which depends on Reynolds number, initial velocity statistics at the tube exit and the presence/absence of coherent structures. It is shown that the tube extension ratio L/D as well as the sharp edged abrupt contraction influence the initial jet structure at the tube exit. For both L/D ratios, the presence of the abrupt contraction results in transitional jet flow in the range 2000?<?Re b ?<?4000 and in flow features associated with forced jets and high Reynolds numbers Re b ?>?104. The tube extension ratio L/D downstream from the abrupt contraction determines the shear layer roll up so that for L/D?=?1.2 flow visualisation suggests the occurrence of toroidal vortices for Re b ?<?4000 whereas helical vortices are associated with the transitional regime for L/D?=?53.2. Found flow features are compared to features reported in literature for smooth contraction nozzles and long pipe flow.  相似文献   

9.
The detailed mean flow and turbulence measurements of a turbulent air slot jet impinging on two different semi-circular convex surfaces were investigated in both free jet and impingement wall jet regions at a jet Reynolds number Rew=12,000, using a hot-wire X-probe anemometer. The parametric effects of dimensionless circumferential distance, S/W=2.79-7.74, slot jet-to-impingement surface distance Y/W=1-13, and surface curvature D/W=10.7 and 16 on the impingement wall jet flow development along a semi-circular convex surface were examined. The results show that the effect of surface curvature D/W increases with increasing S/W. Compared with transverse Reynolds normal stress, [`(v2 )] /Um2 \overline {v^2 } /U_{\rm m}^2 , the streamwise Reynolds normal stress, [`(u2 )] /Um2 \overline {u^2 } /U_{\rm m}^2 , is strongly affected by the examined dimensionless parameters of D/W, Y/W and S/W in the near-wall region. It is also evidenced that the Reynolds shear stress, -[`(uv)] /Um2 - \overline {uv} /U_{\rm m}^2 is much more sensitive to surface curvature, D/W.  相似文献   

10.
We study the asymptotic behavior of compressible isentropic flow through a porous medium when the initial mass is finite. The model system is the compressible Euler equation with frictional damping. As t ?? ??, the density is conjectured to obey the well-known porous medium equation and the momentum is expected to be formulated by Darcy??s law. In this paper, we prove that any L ?? weak entropy solution to the Cauchy problem of damped Euler equations with finite initial mass converges strongly in the natural L 1 topology with decay rates to the Barenblatt profile of the porous medium equation. The density function tends to the Barenblatt solution of the porous medium equation while the momentum is described by Darcy??s law. The results are achieved through a comprehensive entropy analysis, capturing the dissipative character of the problem.  相似文献   

11.
We show that any weak solution to the full Navier–Stokes–Fourier system emanating from the data belonging to the Sobolev space W 3,2 remains regular as long as the velocity gradient is bounded. The proof is based on the weak-strong uniqueness property and parabolic a priori estimates for the local strong solutions.  相似文献   

12.
We have recently discovered a new type of self-excited flapping jets due to a flexible film whose leading edge is fixed at the nozzle exit [Exp Ther Fluid Sci, 106, 226-233]. This paper is to report the experimental investigation on mixing characteristics of the jet induced by a rectangular FEP film. Hot wire anemometry and flow visualization are used to examine the flapping jet flow versus the non-flapping counterpart. Experiments are conducted under the following conditions: i.e., L/D = 1.0 (fixed), W/D = 0.03 ~ 1.0 (varying) and Re = 10000 ~ 45000 (varying); where W and L are the film's width and length, D is the nozzle-exit diameter, and Re is the Reynolds number defined by Re UoD/ν with Uo and ν being the jet-exit velocity and fluid viscosity.It is found that the jet-flapping frequency fF varies with W in a complex fashion while it grows roughly linearly with increasing Uo for W/D ≥ 0.5. The flapping Strouhal number StF fFD/Uo ranges in 0.13 ≤ StF ≤ 0.23 for Re = 15,000 ~ 45,000. These Strouhal numbers are substantially lower than that (≈ 0.45 ~ 0.7) for the primary vortex generation in the free jet, but one to two orders of magnitude higher than those from the conventional self-exciting fluidic devices. In general, the flapping jet decays and spreads more rapidly than does the free jet. As W increases, the decaying and spreading rates both grow. Of significance, the centerline evolutions of Taylor and Kolmogorov scales versus the integral scale are examined to characterize the small scales of turbulence against the large-scale motion.  相似文献   

13.
We consider the stability of the in-phase and out-of-phase modes of a pair of fractionally-coupled van der Pol oscillators: 1 2 where D ?? x is the order ?? derivative of x(t), and 0<??<1. We use a two-variable perturbation method on the system??s corresponding variational equations to derive expressions for the transition curves separating regions of stability from instability in the ??, ?? parameter plane. The perturbation results are validated with numerics and through direct comparison with known results in the limiting cases of ??=0 and ??=1, where the fractional coupling reduces to position coupling and velocity coupling, respectively.  相似文献   

14.
We prove existence and uniqueness of global classical solutions to the generalized large-scale semigeostrophic equations with periodic boundary conditions. This family of Hamiltonian balance models for rapidly rotating shallow water includes the L 1 model derived by R. Salmon in 1985 and its 2006 generalization by the second author. The results are, under the physical restriction that the initial potential vorticity is positive, as strong as those available for the Euler equations of ideal fluid flow in two dimensions. Moreover, we identify a special case in which the velocity field is two derivatives smoother in Sobolev space as compared to the general case. Our results are based on careful estimates which show that, although the potential vorticity inversion is nonlinear, bounds on the potential vorticity inversion operator remain linear in derivatives of the potential vorticity. This permits the adaptation of an argument based on elliptic L p theory, proposed by Yudovich in 1963 for proving existence and uniqueness of weak solutions for the two-dimensional Euler equations, to our particular nonlinear situation.  相似文献   

15.
Results obtained previously by the discrete vortex method with a “viscous” correction are generalized. The boundaries of applicability of this method are determined. Previous results obtained for a flow past a flat plate are supplemented with solution convergence estimates. Exhaustion of a plane jet of a viscous incompressible fluid into the ambient space is modeled. The geometric parameters of the jet (its half-width, shapes of the streamwise velocity profiles, and intensity of oscillations) are analyzed. The calculated results are found to agree well with experimental data and with results calculated by other methods.  相似文献   

16.
A system of three coupled limit cycle oscillators with vastly different frequencies is studied. The three oscillators, when uncoupled, have the frequencies ?? 1=O(1), ?? 2=O(1/??) and ?? 3=O(1/?? 2), respectively, where ???1. The method of direct partition of motion (DPM) is extended to study the leading order dynamics of the considered autonomous system. It is shown that the limit cycles of oscillators 1 and 2, to leading order, take the form of a Jacobi elliptic function whose amplitude and frequency are modulated as the strength of coupling is varied. The dynamics of the fastest oscillator, to leading order, is unaffected by the coupling to the slower oscillator. It is also found that when the coupling strength between two of the oscillators is larger than a critical bifurcation value, the limit cycle of the slower oscillator disappears. The obtained analytical results are formal and are checked by comparison to solutions from numerical integration of the system.  相似文献   

17.
This article is concerned with the global regularity of weak solutions to systems describing the flow of shear thickening fluids under the homogeneous Dirichlet boundary condition. The extra stress tensor is given by a power law ansatz with shear exponent p≥ 2. We show that, if the data of the problem are smooth enough, the solution u of the steady generalized Stokes problem belongs to W1,(np+2-p)/(n-2)(W){W^{1,(np+2-p)/(n-2)}(\Omega)} . We use the method of tangential translations and reconstruct the regularity in the normal direction from the system, together with anisotropic embedding theorem. Corresponding results for the steady and unsteady generalized Navier–Stokes problem are also formulated.  相似文献   

18.
The Wasserstein distances Wp (p \({\geqq}\) 1), defined in terms of a solution to the Monge–Kantorovich problem, are known to be a useful tool to investigate transport equations. In particular, the Benamou–Brenier formula characterizes the square of the Wasserstein distance W2 as the infimum of the kinetic energy, or action functional, of all vector fields transporting one measure to the other. Another important property of the Wasserstein distances is the Kantorovich–Rubinstein duality, stating the equality between the distance W1(μ, ν) of two probability measures μ, ν and the supremum of the integrals in d(μ ?ν) of Lipschitz continuous functions with Lipschitz constant bounded by one. An intrinsic limitation of Wasserstein distances is the fact that they are defined only between measures having the same mass. To overcome such a limitation, we recently introduced the generalized Wasserstein distances \({W_p^{a,b}}\), defined in terms of both the classical Wasserstein distance Wp and the total variation (or L1) distance, see (Piccoli and Rossi in Archive for Rational Mechanics and Analysis 211(1):335–358, 2014). Here p plays the same role as for the classic Wasserstein distance, while a and b are weights for the transport and the total variation term. In this paper we prove two important properties of the generalized Wasserstein distances: (1) a generalized Benamou–Brenier formula providing the equality between \({W_2^{a,b}}\) and the supremum of an action functional, which includes a transport term (kinetic energy) and a source term; (2) a duality à la Kantorovich–Rubinstein establishing the equality between \({W_1^{1,1}}\) and the flat metric.  相似文献   

19.
We show that if v is a weak solution to the Navier—Stokes equations in the class L(0,TL3(W)3) L^{\infty}(0,T;\, L^3(\Omega)^3) then the set of all possible singular points of v in W \Omega , at every time t0 ? (0,T) t_0\in(0,T) , is at most finite and we also give the estimate of the number of the singular points.  相似文献   

20.
In this work, the turbulent mixing of a confined coaxial jet in air is investigated by means of simultaneous particle image velocimetry and planar laser induced fluorescence of the acetone seeded flow injection. The jet is injected into a turbulent duct flow at atmospheric pressure through a 90 ° pipe bend. Measurements are conducted in a small scale windtunnel at constant mass flow rates and three modes of operation: isothermal steady jet injection at a Dean number of 20000 (R e d =32000), pulsed isothermal injection at a Womersley number of 65 and steady injection at elevated jet temperatures of ΔT=50 K and ΔT=100 K. The experiment is aimed at providing statistically converged quantities of velocity, mass fraction, turbulent fluctuations and turbulent mass flux at several downstream locations. Stochastic error convergence over the number of samples is assessed within the outer turbulent shear layer. From 3000 samples the statistical error of time-averaged velocity and mass fraction is below 1 % while the error of Reynolds shear stress and turbulent mass flux components is in the of range 5-6 %. Profiles of axial velocity and turbulence intensity immediately downstream of the bend exit are in good agreement with hot-wire measurements from literature. During pulsed jet injection strong asymmetric growing of shear layer vortices lead to a skewed mass fraction profile in comparison with steady injection. Phase averaging of single shot PLIF-PIV measurements allows to track the asymmetric shear layer vortex evolvement and flow breakdown during a pulsation cycle with a resolution of 10°. Steady injection with increased jet temperature supports mixing downstream from 6 nozzle diameters onward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号