首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Schiff碱及其配合物在治疗肿瘤、抗菌、仿生载氧等方面具有优异的性能,在催化领域中也表现出多种性质。本文合成了三种结构简单的Schiff碱配体以及它们的过渡金属配合物,并研究了其对环己烯的催化环氧化性能。配体的结构如下。  相似文献   

2.
Summary The quality of sour cream production from homogenised cream in the 1970's was highly improved. The heat resistance of product remained badly, that is, it precipitated in hot food. The Hungarian Dairy Research Institute (HDRI) has elaborated a technology that eliminates this disadvantageous characteristic: it is the use of exopolysaccharide (EPS)-producing lactic acid bacteria. This bacterium produces no aroma, and the proliferation optima of EPS-producing and aroma-producing lactic acid bacteria cultures do not coincide. Detection of these two bacteria was done until now by gene technology, that is expensive and long lasting one. We have applied (at first as we know) isotherm calorimetric method to follow the simultaneous proliferation of these bacteria and it was determined that: both lactic acid bacteria cultures proliferate well at the non-optimal temperature of 30°C and the thermophilic EPS-producing culture was faster than that of the mesophilic aroma-producer. The two cultures do not inhibit each other in mixed culture, and the ratio in mixed culture was 79% EPS-producer and 21% aroma-producer.  相似文献   

3.
Following its widespread use in biomedical research, fluorescence microscopy has recently been introduced in the catalysis field to study chemocatalytic processes with a high spatiotemporal resolution, a unique sensitivity down to the single molecule level and this under in situ conditions. This tutorial review is structured around the length scales that are currently accessible in fluorescence microscopy and discusses the different conceptual approaches that have been developed to study molecular concentration and dynamics like diffusion and catalytic conversion at these micron and sub-micron levels.  相似文献   

4.
Based on a few noteworthy features, cerium oxide nanoparticles have gained significance in nanotechnology. The effective microwave combustion method (MCM) and the conventional sol–gel (CRSGM) technologies are used in this study to successfully generate the crystalline CeO2 nanoparticles (NPs). Additionally, using a variety of spectroscopic and analytical methods, the synthesized CeO2 NPs are examined to assess to understand their structure and morphology. The XRD patterns of CeO2 NPs show that the structure exhibits a face-centered cubic lattice. Then, with demonstrated good conversion and selectivity, the impact of the epoxidation reaction of cyclohexene was examined. Finally, it can be said that using CeO2 nanoparticles is an efficient strategy to increase the catalytic activity toward the epoxidation reaction of cyclohexene. In the presence of acetonitrile as a solvent and H2O2 as an oxidant, the catalyst samples utilized in the cyclohexene epoxidation reaction were examined. In this study, the CeO2 catalyst outperformed all other catalysts in terms of cyclohexene maximal conversion and selectivity. After six prolonged cycles, the conversion of cyclohexene oxidation using CeO2 NPs shows reasonable recyclability and conversion efficiency, making it the best catalyst for an industrial production application.Additionally, the upgraded CeO2 nanoparticle electrode for nitrite detection has a linear concentration range (0.02–1200 M), a low detection limit (0.22 M), and a higher sensitivity (1.735 A M−1 cm−2). CeO2 NPs, on the other hand, have a quick response time, excellent sensitivity, and high selectivity. Additionally, the manufactured electrode is used to find nitrite in various water samples. Finally, it can be said that using CeO2 NPs is an efficient strategy to increase the catalytic activity toward cyclohexene oxidation and nitrite.  相似文献   

5.
环氧化物是一种重要的有机化工原料,广泛应用于合成化学、聚合物合成、食品化学、药物化学等领域中.烯烃催化环氧化反应是制备环氧化物的主要方法.一些均相钼配合物催化剂对烯烃环氧化反应表现出较好的催化性能.然而均相催化剂在实际生产中存在与产物分离困难、不易循环利用等问题.为解决上述问题,研究人员采用不同策略将各种钼配合物负载在固体载体上,制备出活性相对较高的多相钼配合物催化剂.然而,这类负载型钼配合物催化剂在以双氧水为氧化剂的反应体系中普遍存在活性组分易于流失的问题,导致催化剂的稳定性相对较差.因此,设计制备具有高活性和高稳定性的多相钼基烯烃环氧化催化剂具有重要的科学意义和实用价值.将过渡金属引入到具有MFI型拓扑结构的微孔分子筛的骨架上能够制备出具有高活性和高稳定性的杂原子分子筛催化剂.例如,采用直接水热法合成的钛硅分子筛(如TS-1)对以双氧水为氧化剂的小分子烯烃(如丙烯)环氧化反应表现出非常高的活性和稳定性.受这一研究结果启发,研究人员还开展了水热法合成Mo原子取代的MFI型分子筛(Mo-MFI).然而,由于Mo的离子半径较大(与Si相比),且合成体系中的Mo物种在碱性条件下易于发生沉淀,导致引入到分子筛骨架或孔道中的Mo含量极低.本文以Mo-EDTA配合物为钼源,四丙基氢氧化铵为模板剂,正硅酸乙酯为硅源,采用一步水热法合成了系列具有不同钼含量的Mo-MFI-n分子筛(n代表初始Si/Mo摩尔比).结合X-射线粉未衍射、红外光谱、紫外-可见吸收光谱、拉曼光谱、透射电子显微镜等表征技术对分子筛的结构、组成和Mo物种的状态进行了研究.结果表明,使用Mo-EDTA作为钼源有利于在分子筛骨架和孔道中引入更多的Mo物种;EDTA2?独特的配位能力使其在分子筛生长过程中能够有效调节Mo物种的释放率,并与硅物种缩合的速率匹配,从而使更多的Mo物种被引入到分子筛骨架中;同时也会有少量的Mo物种以骨架外Mo团簇的形式分布在分子筛的孔道内或孔口附近.通过以双氧水为氧化剂的环己烯环氧化反应考察了所制备的Mo-MFI-n催化剂的性能.经组分优化的Mo-MFI-50(初始Si/Mo摩尔比为50)催化剂能够在较温和的条件下有效地将环己烯转化为相应的环氧化物.在75℃下反应9 h后,环己烯转化率和环氧化物选择性分别高达93%和82%,性能明显优于传统水热法合成的Mo-MFI分子筛.此外,反应后的Mo-MFI-50分子筛催化剂通过简单的过滤而不需要焙烧处理就可多次重复利用,表现出较高的结构稳定性和循环性.  相似文献   

6.
Novel non-hydrolytic syntheses of titanosilicate xerogels by polycondensation of silicon acetate, Si(OAc)4, with titanium (IV) dimethylamide or diethylamide, Ti(NR2)4 (R?=?Me, Et), are presented. The reactions are based on acetamide elimination and yield gels with a high content of Si?CO?Ti bonds in comparison with the ester elimination route. Although a ligand exchange was observed, it was interestingly not followed by homo-condensation and during the synthesis the phase separation to SiO2 and TiO2 was avoided. The degree of condensation reached up to 68?%. The xerogels prepared for a comparison by ester elimination from Si(OAc)4 and titanium (IV) isopropoxide featured a significantly lower content of the Si?CO?CTi bonds. The initial tests in the epoxidation of cyclohexene by cumyl hydroperoxide (CHP) indicated a high selectivity and moderate activity of the xerogels. The catalytic properties were significantly improved by combining non-hydrolytic and hydrolytic methods yielding mesoporous and homogeneous Si/Ti mixed oxides. The catalysts prepared by these methods provided a complete epoxidation of cyclohexene in 2?h at?65?°C.  相似文献   

7.
利用Co(CH_3COO)_2、氧化钼、钼酸和咪唑为基础原料,在水热条件下成功制备了CoMoO_4晶须材料.通过元素分析、X-射线衍射、傅里叶变换红外光谱以及扫描电子显微镜等手段对材料的结构和形态进行了表征,证明为完整均匀的CoMoO_4晶须.在环辛烯环氧化催化反应中对材料的催化性能进行了测试,结果证明CoMoO_4晶须具有优良的非均相催化性能.  相似文献   

8.
The cubic titanosiloxane [RSiO(3)Ti(OPr(i))](4) (R = 2,6-Pr(2)(i)C(6)H(3)NSiMe(3)) (1) is found to be relatively inert in its attempted reactions with alcohols and other acidic hydrogen containing compounds. The reaction of 1 with silanol (Bu(t)O)(3)SiOH however proceeds over a period of approximately 3 months to result in the hydrolysis of (Bu(t)O)(3)SiOH and yield the transesterification product [RSiO(3)Ti(OBu(t))](4) (2) rather than the expected [RSiO(3)Ti(OSi(OBu(t))(3))](4). Products 1 and 2 have been characterized by elemental analysis, thermal analysis, and spectroscopic techniques (IR, EI-MS, and NMR). The solid-state structures of both 1 and 2 have been determined by single-crystal X-ray diffraction studies. Compounds 1 and 2 are isomorphous and crystallize in a cubic space group with a central cubic Ti(4)Si(4)O(12) core. Solid state thermolysis of 1 was carried at 450, 600, 800, 900, 1000, and 1200 degrees C in air, and the resulting titanosilicate materials 1a-f were characterized by spectroscopic (IR and DR UV), powder XRD, and electron microscopic methods. While, the presence of Ti-O-Si linkages appears to be dominant in the samples prepared at lower temperatures (450-800 degrees C), phase separation of anatase and rutile forms of TiO(2) occurs at temperatures above 900 degrees C as revealed by IR spectral and PXRD studies. The presence of octahedral titanium centers was observed by DR UV spectroscopy for the samples heated at higher temperatures. The use of new titanosilicate materials as catalysts for olefin epoxidation has been investigated. The titanosilicate materials produced at temperatures below 800 degrees C with a large number of Ti-O-Si linkages (or tetrahedral titanium centers) were found to be more active catalysts compared to the materials produced above 900 degrees C. The observed conversion in the epoxidation reactions was found to be somewhat low although the selectivity of the epoxide formation over the other possible oxidized products was found to be very good.  相似文献   

9.
The intent of the study is to attain a high selectivity rate and stable interaction between metals in any heterogeneous catalyst. Cyclohexene is extremely valuable in industrial domains such as the synthesis of perfumes and nylons, and the mesoporous alumina was upstretched with a various ratio of bimetal copper (10%) and nickel (5%, 10%, 15%, and 20%) under wet impregnation procedures by the mesoporous aluminum catalyst. This impregnation of a metal and catalyst was used to assess the highest conversion and selectivity of cyclohexene to cyclohexanol. This catalytic nature was validated by analyzing the crystal structure and size using the X-ray diffraction technique. The functional group is identified using FT-IR (Fourier Transform Infrared Spectroscopy), while the surface area is assessed using BET (Brunauer-Emmet-Teller). HR-TEM (transmission electron microscopy) is used to validate the morphology of catalysts and their surface layers; HR-SEM (Scanning Electron Microscopy) is used to highlight and assess microparticles; and NH3TPD (Temperature-Programmed Desorption) is used to measure the overall acidity of the catalyst. The catalytic performance was proved by the yield achieved by varying parameters such as temperature, pressure, WHSV−1, reaction time, and solvents, which yielded over 98.5% in both cyclohexene conversion and selectivity. In the conversion of the product, H2O2 performs as an oxidant, and acetonitrile serves as a solvent at constant mild conditions of 90 °C and 20 bar pressure. Furthermore, even after seven successive runs with the Al2O3/Cu (10%)-Ni (15%) mixture, remarkable reusability was attained despite a minor decline in cyclohexanol selectivity. The effective impregnation of copper and nickel into supported mesoporous Al2O3 produced a long-lasting, stable hybrid nanostructure with excellent stability and no metal leaching. The current synthesis protocol's advantages and qualities include its efficiency, cost-effectiveness, ecological sustainability, and comfort of synthesis with readily available components.  相似文献   

10.
A hybrid heterogeneous catalyst system, which has been synthesized by covalently anchoring oxodiperoxo molybdenum chelate complexes onto the surface of mesoporous MCM-41, is highly active and truly heterogeneous for the liquid-phase epoxidation of cyclooctene with tBuOOH as the oxygen source.  相似文献   

11.
In this communication we describe for the first time the use of isothermal titration calorimetry (ITC) to measure the energetics of adsorption of enantiomers from aqueous onto chiral crystal surfaces. Our results demonstrate that ITC can be used to measure chiral interactions at crystal surfaces.  相似文献   

12.
The kinetics of the catalytic epoxidation of cyclohexene with tert-butyl hydroperoxide (TBHP) in the presence of a novel molybdenum–squarate complex was studied. Both the kinetics and mechanism of the process were found to be similar to those established with the “classical” homogeneous catalysts for epoxidation.  相似文献   

13.
A Schiff base ligand was synthesized by the condensation of salicylaldehyde with l-tyrosine. Interaction of this ligand with Mn(II)-exchanged zeolite Y leads to encapsulation of the ligand within the zeolite and complexation of the metal. The encapsulated complex has been characterized by spectroscopic studies and chemical analyses. This material serves as a catalyst for the oxidation of cyclohexene to cyclohexene epoxide and 2-cyclohexene-1-ol using H2O2 as oxidant. The reaction conditions have been optimized for solvent, temperature and amount of oxidant and catalyst. The catalyst shows high activity and selectivity toward production of cyclohexene epoxide in acetonitrile at 60 °C with [H2O2]/[C6H10] = 2.5 molar ratio. Comparison of the encapsulated catalyst with the corresponding homogeneous catalyst showed that the heterogeneous catalyst had higher activity and selectivity than the homogeneous catalyst.  相似文献   

14.
15.
王芳  刘俊华 《分子催化》2013,27(4):333-341
环氧苯乙烷具有重要的经济价值,现有的工业生产技术存在能耗高及环境污染大等诸多问题,使得环境友好的苯乙烯环氧化生产工艺的开发具有重要意义.采用一步合成法制备了系列金-硅胶纳米球催化剂,实现了纳米金的高度分散(粒径6.4 nm),对苯乙烯环氧化反应表现出较好的催化活性及产物选择性.通过X射线粉末衍射、红外光谱及X射线光电子能谱等表征技术,结合苯乙烯环氧化反应性能的考察,对金-硅胶催化剂的制备条件进行了优化.  相似文献   

16.
17.
The epoxidation of cyclohexene with hydrogen peroxide in a biphase medium (H2O/CHCl3) was carried out with the reaction-controlled phase transfer catalyst composed of quaternary ammonium heteropolyoxotungstates [π-C5H5N(CH2)15CH3]3[PW4O16]. A conversion of about 90% and a selectivity of over 90% were obtained for epoxidation of cyclohexene on the catalyst. The fresh catalyst, the catalyst under reaction conditions and the used catalysts were characterized by FT-IR, Raman and 31P NMR spectroscopy. It appears that the insoluble catalyst could degrade into smaller species, [(PO4){WO(O2)2}4]3−, [(PO4){WO(O2)2}2{WO(O2)2(H2O)}]3−, and [(PO3(OH)){WO(O2)2}2]2− after the reaction with hydrogen peroxide and becomes soluble in the CHCl3 solvent. The active oxygen in the [W2O2(O2)4] structure unit of these soluble species reacts with olefins to form the epoxides and consequently the corresponding W---Ob---W (corner-sharing) and W---Oc---W (edge-sharing) bonds are formed. The peroxo group [W2O2(O2)4] can be regenerated when the W---Ob---W and W---Oc---W bonds react with hydrogen peroxide again. These soluble species lose active oxygen and then polymerize into larger compounds with the W---Ob---W and W---Oc---W bonds and then precipitate from the reaction solution after the hydrogen peroxide is consumed up. Part of the used catalyst seems to form more stable compounds with Keggin structure under the reaction conditions.  相似文献   

18.
Magnesium trisilicate mixture BP, a liquid antacid, contains three active components; magnesium trisilicate BP (MT) (5% (w/v)), light magnesium carbonate BP (LMC) (5% (w/v)) and sodium bicarbonate BP (SB) (5% (w/v)). The role of each component in the mixture is not well understood although each contributes to the overall acid neutralising capacity (ANC) of the product, the standard measure by which antacid performance is rated. Previous work has suggested that the inclusion of magnesium trisilicate BP in the mixture is unwarranted [Int. J. Pharm., 29 (1986) 253], because of its extremely slow reaction with hydrochloric acid. In light of these observations, there is a need to study the basic mechanisms of neutralisation of the components of the mixture. Since the heat change associated with simple mono-protic acid-base neutralisation is approximately −57 kJ mol−1 [Chemistry Data Book, John Murray, London, 1982], calorimetry may be used to study the reactions. In this work, the relative contributions to the ANC of the product of each component were measured using solution calorimetry. It was found that light magnesium carbonate BP contributed most to the overall ANC of the product, sodium bicarbonate BP the least. Magnesium trisilicate BP was found to neutralise acid over an extended time period, and contributed most to the duration of action of the dose. Moreover, it appears that light magnesium carbonate BP and magnesium trisilicate BP in combination exhibit a greater than expected ANC, showing positive synergy.  相似文献   

19.
Catalytic properties of a mechanical mixture of SiO2-iminodiacetatechromium(III)+V2O5/SiO2 have been studied. A synergetic effect in the combined catalytic oxidation-epoxidation of cyclohexene, observed at about 40 wt.% V2O5, is due to the autocatalytic character of the combined process.
Cr(III), - . 40% . - . , .
  相似文献   

20.
利用太阳能缓解能源危机和解决环境污染,是当前和未来的全球性课题.其中,光催化技术的研究步伐日渐加快.这不仅体现在光催化材料种类的增加,更体现在以光催化为基础的多场协同催化,特别是光热耦合作用成为增强光催化性能的一种高效、可靠的方法.氧空位的引入不仅可以拓宽催化剂对可见光的吸收、抑制载流子的复合、促进反应物的吸附以及降低反应的活化能,而且对于光热协同催化效率的提升有着重要的贡献.然而,目前光热协同催化的表征多局限于常规的光催化手段.开展光热耦合下的测量技术对深刻理解光热催化是十分必要的.本文研究温度、气氛、氧空位浓度对TiO2光电导的影响,构建光电导与光热催化活性之间的关系.我们将商用的ST-01 TiO2制成浆料,利用丝网印刷法将浆料覆盖在刻有沟槽的FTO上,并通过N2/H2混合气不同温度退火,得到不同氧空位含量的TiO2薄膜(Ov-TiO2).采用紫外-可见光谱(UV-Vis),拉曼光谱(Raman),电子顺磁共振(ESR)等手段对样品进行了表征.结果表明,N2/H2退火温度越高,氧空位浓度越高.我们对不同浓度氧空位的样品进行了光催化及光热协同催化CO2还原实验.结果表明,适量氧空位的样品(H2-150)光催化还原CO2性能最差,但光热协同催化还原CO2的性能最佳.我们对其光电导值的衰减情况进行了分析,看到H2-150样品在CO2气氛、光热条件下,电导衰减加快.由于光电导的衰减是由电荷复合和电荷参与的表面反应共同决定的,为确定是哪一因素决定了电导的衰减,我们进一步测试了H2-150样品在N2气氛下的电导衰减情况.结果发现,H2-150样品在N2气氛、光热条件下电导衰减反而变慢.这表明,造成H2-150样品在CO2气氛、光热条件下的电导衰减加快是光热条件下CO2还原速率加快,也验证了H2-150具有较好的光热催化CO2活性.与H2-150样品不同的是,大量氧空位样品(H2-350)在CO2气氛、光热条件下电导衰减反而变慢,我们认为这是由于H2-350存在深能级缺陷,在热的作用下会将捕获的电子释放,因此延缓了光电导的衰减.但由于深能级电子的还原能力较弱,所以H2-350样品的光热CO2还原活性稍逊于H2-150.综上所述,在光热电导与光热催化相关的研究中,我们证实了在Ov-TiO2中被捕获的电子在热激发下可再次向导带弛豫,从而解释了Ov-TiO2优异的光热催化性能.因此,光热电导的研究在理解光热催化方面具有重要的前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号