首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
We have developed a realistic, fully general relativistic computer code to simulate optical projection in a strong, spherically symmetric gravitational field. The standard theoretical analysis of optical projection for an observer in the vicinity of a Schwarzschild black hole is extended to black hole spacetimes with a repulsive cosmological constant, i.e, Schwarzschild-de Sitterspacetimes. Influence of the cosmological constant is investigated for static observers and observers radially free-falling from the static radius. Simulations include effects of the gravitational lensing, multiple images, Doppler and gravitational frequency shift, as well as the intensity amplification. The code generates images of the sky for the static observer and a movie simulations of the changing sky for the radially free-falling observer. Techniques of parallel programming are applied to get a high performance and a fast run of the BHC simulation code.   相似文献   

3.
We discuss the failure of general relativity to provide a proper Newtonian limit when the spacetime dimensionality is reduced to 2+1 and try to bypass this difficulty by assuming alternative equations for the gravitational field. We investigate the properties of spacetimes generated by circularly symmetric matter distributions in two cases: weakening Einstein equations, and by considering the Brans-Dicke theory of gravity. A comparison with the corresponding Newtonian picture is made.  相似文献   

4.
《Nuclear Physics B》1998,524(3):639-657
The one-loop effective action for QED in curved spacetime contains equivalence principle violating interactions between the electromagnetic field and the spacetime curvature. These interactions lead to a dependence of the photon velocity on the motion and polarization directions. In this paper we investigate the gravitational analogue to the electromagnetic birefringence phenomenon in the static and radiating topological black hole backgrounds. For the static topological black hole spacetimes, the velocity shift of photons is the same as that in Reissner-Nordström black holes. This reflects the fact that the propagation of vacuum polarized photons is not sensitive to the asymptotic behavior and topological structure of spacetimes. For the massless topological black hole and BTZ black hole, the light cone condition remains unchanged. In the radiating topological black hole backgrounds, the light cone condition is changed even for the radially directed photons. The velocity shifts depend on the topological structures. Due to the null fluid, the velocity shift of photons no longer vanishes at the apparent horizons as well as the event horizons. However, the “polarization sum rule” is still valid.  相似文献   

5.
A simple observation about the action for geodesics in a stationary spacetime with separable geodesic equations leads to a natural class of slicings of that spacetime whose orthogonal geodesic trajectories represent the world lines of freely falling fiducial observers. The time coordinate function can then be taken to be the observer proper time, leading to a unit lapse function, although the time coordinate lines still follow Killing trajectories to retain the explicitly stationary nature of the coordinate grid. This explains some of the properties of the original Painlevé-Gullstrand coordinates on the Schwarzschild spacetime and their generalization to the Kerr-Newman family of spacetimes, reproducible also locally for the Gödel spacetime. For the static spherically symmetric case the slicing can be chosen to be intrinsically flat with spherically symmetric geodesic observers, leaving all the gravitational field information in the shift vector field.  相似文献   

6.
张元仲  郭汉英 《物理学报》1982,31(11):1554-1557
本文从粒子运动方程出发证明了矢量-张量引力模型中反引力的存在,这种反引力如果以长程力的形式出现,将使得粒子的运动偏离短程线。在牛顿近似和弱场近似下,相应于矢量场的反引力与相应于张量场的吸引力互相抵消,使得检验粒子在球对称静态引力场中的加速度为零,这显然与牛顿万有引力现象矛盾。 关键词:  相似文献   

7.
Neutrino oscillations are analyzed in an accelerating and rotating reference frame, assuming that the gravitational coupling of neutrinos is flavor dependent, which implies a violation of the equivalence principle. Unlike the usual studies in which a constant gravitational field is considered, such frames could represent a more suitable framework for testing if a breakdown of the equivalence principle occurs, due to the possibility to modulate the (simulated) gravitational field. The violation of the equivalence principle implies, for the case of a maximal gravitational mixing angle, the presence of an off-diagonal term in the mass matrix. The consequences on the evolution of flavor (mass) eigenstates of such a term are analyzed for solar (oscillations in the vacuum) and atmospheric neutrinos. We calculate the flavor oscillation probability in the non-inertial frame, which does depend on its angular velocity and linear acceleration, as well as on the energy of neutrinos, the mass-squared difference between two mass eigenstates, and on the measure of the degree of violation of the equivalence principle (). In particular, we find that the energy dependence disappears for vanishing mass-squared difference, unlike the result obtained by Gasperini, Halprin, Leung, and other physical mechanisms proposed as a viable explanation of neutrino oscillations. Estimations on the upper values of are inferred for a rotating observer (with vanishing linear acceleration) comoving with the earth, hence rad/sec, and all other alternative mechanisms generating the oscillation phenomena have been neglected. In this case we find that the constraints on are given by for solar neutrinos and for atmospheric neutrinos. Received: 14 December 2000 / Published online: 15 March 2001  相似文献   

8.
9.
In this article, we investigate mathematically the variant of post-Newtonian mechanics using generalized fractional derivatives. The relativistic-covariant generalization of the classical equations for gravitational field is studied. The equations (i) match the weak Newtonian limit on the moderate scales and (ii) deliver a potential higher than Newtonian on certain large-distance characteristic scales. The perturbation of the gravitational field results in the tiny secular perihelion shift and exhibits some unusual effects on large scales. The general representation of the solution for the fractional wave equation is given in the form of retarded potentials. The solutions for the Riesz wave equation and classical wave equation are clearly distinctive in an important sense. The hypothetical gravitational Riesz wave demonstrates the space diffusion of the wave at the scales of metric constant. The diffusion leads to the blur of the peak and disruption of the sharp wave front. This contrasts with the solution of the D'Alembert classical wave equation, which obeys the Huygens principle and does not diffuse.  相似文献   

10.
The generalized Laplace partial differential equation, describing gravitational fields, is investigated in de Sitter spacetime from several metric approaches—such as the Riemann, Beltrami, Börner-Dürr, and Prasad metrics—and analytical solutions of the derived Riccati radial differential equations are explicitly obtained. All angular differential equations trivially have solutions given by the spherical harmonics and all radial differential equations can be written as Riccati ordinary differential equations, which analytical solutions involve hypergeometric and Bessel functions. In particular, the radial differential equations predict the behavior of the gravitational field in de Sitter and anti-de Sitter spacetimes, and can shed new light on the investigations of quasinormal modes of perturbations of electromagnetic and gravitational fields in black hole neighborhood. The discussion concerning the geometry of de Sitter and anti-de Sitter spacetimes is not complete without mentioning how the wave equation behaves on such a background. It will prove convenient to begin with a discussion of the Laplace equation on hyperbolic space, partly since this is of interest in itself and also because the wave equation can be investigated by means of an analytic continuation from the hyperbolic space. We also solve the Laplace equation associated to the Prasad metric. After introducing the so called internal and external spaces—corresponding to the symmetry groups SO(3,2) and SO(4,1) respectively—we show that both radial differential equations can be led to Riccati ordinary differential equations, which solutions are given in terms of associated Legendre functions. For the Prasad metric with the radius of the universe independent of the parametrization, the internal and external metrics are shown to be of AdS-Schwarzschild-like type, and also the radial field equations arising are shown to be equivalent to Riccati equations whose solutions can be written in terms of generalized Laguerre polynomials and hypergeometric confluent functions.  相似文献   

11.
In previous work we have developed a formulation of quantum mechanics in non-inertial reference frames. This formulation is grounded in a class of unitary cocycle representations of what we have called the Galilean line group, the generalization of the Galilei group that includes transformations amongst non-inertial reference frames. These representations show that in quantum mechanics, just as is the case in classical mechanics, the transformations to accelerating reference frames give rise to fictitious forces. A special feature of these previously constructed representations is that they all respect the non-relativistic equivalence principle, wherein the fictitious forces associated with linear acceleration can equivalently be described by gravitational forces. In this paper we exhibit a large class of cocycle representations of the Galilean line group that violate the equivalence principle. Nevertheless the classical mechanics analogue of these cocycle representations all respect the equivalence principle.  相似文献   

12.
WU Ning 《理论物理通讯》2006,45(3):452-456
Based on unified theory of electromagnetic interactions and gravitational interactions, the non-relativistic limit of the equation of motion of a charged Dirac particle in gravitational field is studied. From the Schrodinger equation obtained from this non-relativistic limit, we can see that the classical Newtonian gravitational potential appears as a part of the potential in the Schrodinger equation, which can explain the gravitational phase effects found in COW experiments.And because of this Newtonian gravitational potential, a quantum particle in the earth's gravitational field may form a gravitationally bound quantized state, which has already been detected in experiments. Three different kinds of phase effects related to gravitational interactions are studied in this paper, and these phase effects should be observable in some astrophysical processes. Besides, there exists direct coupling between gravitomagnetic field and quantum spin, and radiation caused by this coupling can be used to directly determine the gravitomagnetic field on the surface of a star.  相似文献   

13.
14.
We consider the assumption that clocks measure proper time-that is, in a gravitational field ideal clocks are governed by the equationds 2=g ij dxi dxj-and give some theoretical and experimental constraints on clock measurements. In particular, we find that if we assume that clocks are governed by an equation of the formds 4=c ijkl dxi dxj dxk dxl, then this equation must reduce to the quadratic equation in a weak, spherically symmetric, static gravitational field (at least to first order in the Newtonian gravitational potentialU), otherwise additional contributions to the time-delay effect of radar propagation (that are not observed) are predicted.  相似文献   

15.
Null electromagnetic fields and shearfree geodesic null congruences in curved and flat spacetimes are studied. We point out some mathematical problems connected with the validity of the Robinson theorem. The problem of finding nonanalytic twisting congruences in the Minkowski space is reduced to the construction of holomorphic functions with specific boundary conditions.Institute of Theoretical Physics, University of Warsaw Poland  相似文献   

16.
We discuss the concepts of Weyl and Riemann frames in the context of metric theories of gravity and state the fact that they are completely equivalent as far as geodesic motion is concerned. We apply this result to conformally flat spacetimes and show that a new picture arises when a Riemannian spacetime is taken by means of geometrical gauge transformations into a Minkowskian flat spacetime. We find out that in the Weyl frame gravity is described by a scalar field. We give some examples of how conformally flat spacetime configurations look when viewed from the standpoint of a Weyl frame. We show that in the non-relativistic and weak field regime the Weyl scalar field may be identified with the Newtonian gravitational potential. We suggest an equation for the scalar field by varying the Einstein-Hilbert action restricted to the class of conformally-flat spacetimes. We revisit Einstein and Fokker’s interpretation of Nordstr?m scalar gravity theory and draw an analogy between this approach and the Weyl gauge formalism. We briefly take a look at two-dimensional gravity as viewed in the Weyl frame and address the question of quantizing a conformally flat spacetime by going to the Weyl frame.  相似文献   

17.
邵建舟  王永久 《物理学报》2012,61(11):110402-110402
给出了含有整体单极子的黑洞的引力场中试验粒子加速度的表达式, 讨论了整体单极子对加速效应的贡献. 结果表明, 由于整体单极子的存在, 产生了斥力效应; 当速度趋近于光速时, 中性粒子在引力场中受到了斥力作用. 这是牛顿力学中所没有的.  相似文献   

18.
An investigation is made into the possible quantum mechanical effects due to the inertial force effect in the non-inertial systems, e.g. in atoms and molecules moving with high acceleration. In accordance with Einstein's principle of equivalence similar effects should appear in the sufficiently strong permanent gravitational fields.  相似文献   

19.
We examine whether a charge supported statically in a gravitational field radiates, and find the answer to this question to be positive. Based on our earlier results we find that the important condition for the creation of radiation is the existence of a relative acceleration between the charge and its electric field, where such an acceleration causes the curving of the electric field and the creation of a stress force due to this curvature. This stress force is the reaction force, which creates the radiation. Later we find that this condition do exist for a charge supported statically in a gravitational field, where the electric field of the charge falls in the gravitational field, it curves, and the stress force raised in this curved field, creates electromagnetic radiation.  相似文献   

20.
The macroscopic stress-energy tensor of an astronomical medium such as a galaxy of stars is determined by the field equation of general relativity from the small-scale variations in mass and velocity. In the weak-field, slow-motion approximation, in which the gravitational fields of the stars are Newtonian, it is found that the contribution by the small-scale gravitational fields to the macroscopic density and stress are, respectively, the Newtonian gravitational energy density and the Newtonian gravitational stress tensor. This result is based on the general-relativity field equation, not conservation laws, although the general-relativity field equation has the well-known property of being consistent with conservation laws.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号