首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gold colloid:ZnO nanostructures were prepared from Zn powder by using thermal oxidation technique on alumina substrates, then it was impregnated by gold colloid for comparative study. The gold colloid is the solution prepared by chemical reduction technique; it appeared red color for gold nanoparticle solution and yellow color for gold solution. The heating temperature and sintering time of thermal oxidation were 700 °C and 24 h, respectively under oxygen atmosphere. The structural characteristics of gold colloid:ZnO nanostructures and pure ZnO nanostructures were studied using filed emission scanning electron microscope (FE-SEM). From FE-SEM images, the diameter and length of gold colloid:ZnO nanostructures and ZnO nanostructures were in the ranges of 100-500 nm and 2.0-7.0 μm, respectively. The ethanol sensing characteristics of gold colloid:ZnO nanostructures and ZnO nanostructures were observed from the resistance alteration under ethanol vapor atmosphere at concentrations of 50, 100, 200, 500, and 1000 ppm with the operating temperature of 260-360 °C. It was found that the sensitivity of sensor depends on the operating temperature and ethanol vapor concentrations. The sensitivity of gold colloid:ZnO nanostructures were improved with comparative pure ZnO nanostructures, while the optimum operating temperature was 300 °C. The mechanism analysis of sensor revealed that the oxygen species on the surface was O2−.  相似文献   

2.
Cu-Zn/ZnO nanocomposites with a novel core-shell structure have been prepared by a surface precipitation process in aqueous solution. X-ray powder diffraction, scanning electron microscopy and transmission electron microscopy are employed to analyze the structure and morphology of the present products. The influence of the annealing temperature on the core-shell structure of the nanocomposites is investigated, and a possible growth model is proposed. Furthermore, the gas sensors based on the Cu-Zn/ZnO nanocomposites are fabricated and tested, which exhibits high sensitivity and fast response to CO. The best results are obtained for the sensor based on the film annealed at 350 °C, which shows that the sensitivity is about 6.3 when the sensor is exposed to 100 ppm CO at the operating temperature of 240 °C. The possible sensing mechanism of the Cu-Zn/ZnO sensing film has also been discussed.  相似文献   

3.
Copper phthalocyanine film, a p-type organic semiconductor, is synthesized by vacuum sublimation and its surface morphology is characterized by SEM. A silicon-based copper phthalocyanine film gas sensor for NO2 detection is fabricated by MEMS technology. The results show that the resistance and sensitivity of copper phthalocyanine film decrease obviously as the NO2 concentration increases from Oppm to lOOppm. However, the sensitivity nearly keeps a constant of O. 158 between 30 ppm and 70 ppm. The best working temperature of the gas sensor is 90℃ for NO2 gas concentrations of lOppm, 20ppm and 30ppm, which is much lower than that of general metal oxide gas sensor.  相似文献   

4.
Shuttle-like ZnO nano/microrods were successfully synthesized via a low temperature (80 °C), “green” (without any organic solvent or surfactant) and simple hydrothermal process in the solution of zinc chloride and ammonia water. X-ray diffraction and Raman spectroscopy indicated that the ZnO nano/microrods are a well-crystallized hexagonal wurtzite structure. Yet photoluminescence analysis showed that abundant intrinsic defects (52.97% electron donor defects and 45.49% electron acceptor defects) exist on the surface of ZnO crystals. Gas sensors based on the shuttle-like ZnO nano/microrods exhibited high sensitivity, rapid response-recovery and good selectivity to formaldehyde in the range of 10-1000 ppm at an optimum operating temperature of 400 °C. Through applying linear fitting to the plot of sensitivity versus formaldehyde concentration in logarithmic forms, the chemisorbed oxygen species on the ZnO surface were found to be O2− (highly active among O2, O2 and O species). Notably, formaldehyde can be easily distinguished from acetaldehyde with a selectivity of about 3. The high formaldehyde sensitivity is mainly attributed to the synergistic effect of abundant electron donor defects (52.97%) and highly active oxidants (surface adsorbed O2− species) co-existed on the surfaces of ZnO.  相似文献   

5.
Nanoparticles of NiO (NP-NiO) were prepared by a novel sonochemical route from Ni acetate and sodium hydroxide without any requirement of calcinations steps at high temperature and without surfactants. Drop casting of the nanocrystals onto alumina substrates allowed the fabrication of gas sensing devices, which were tested towards NO2 and CO and showed promising results. At low working temperature, the NiO nanoparticles based sensors are selective to nitrogen oxide; in fact a good sensitivity is shown at 200 °C at low concentration (2 ppm), while at temperature above 350 °C, high responses are obtained for carbon monoxide. The results obtained are stimulating for further developing of NP-NiO based sensor devices.  相似文献   

6.
A method for surface doping and functionalization of ZnO nanowires (NWs) with Pd (Pd/ZnO) in a one‐step process is presented. The main advantage of this method is to combine the simultaneous growth, surface doping, and functionalization of NWs by using electrochemical deposition (ECD) at relatively low temperatures (90 °C). Our approach essentially reduces the number of technological steps of nanomaterial synthesis and final nanodevices fabrication with enhanced performances. A series of nanosensor devices is fabricated based on single Pd/ZnO NWs with a radius of about 80 nm using a FIB/SEM system. The influence of Pd nominal composition in Pd/ZnO NW on the H2 sensing response is studied in detail and a corresponding mechanism is proposed. The results demonstrate an ultra‐high response and selectivity of the synthesized nanosensors to hydrogen gas at room temperature. The optimal concentration of PdCl2 in the electrolyte to achieve extremely sensitive nanodevices with a gas response (SH2) ≈ 1.3 × 104 (at 100 ppm H2 concentration) and relatively high rapidity is 0.75 µM. Theoretical calculations on Pd/ZnO bulk and functionalized surface further validated the experimental hypothesis. Our results demonstrate the importance of noble metal presence on the surface due to doping and functionalization of nanostructures in the fabrication of highly‐sensitive and selective gas nanosensors operating at room temperature with reduced power consumption.  相似文献   

7.
In this paper, extensive experimental results on broad-band double cladding Er3+-Yb3+ co-doped superfluorescent fiber sources (SFSs), characterizing their output power, mean wavelength, and bandwidth (BW) stability with variations of pump power, pump wavelength, and fiber temperature, have been reported. For a 55-cm fiber, SFS power from 3.7755 (maximum BW condition of more than 80 nm) to 9.1837 mW (maximum power condition, BW is about 34 nm) has been achieved. The SFS mean wavelength dependence on pump wavelength is highly pump temperature sensitive, and can be reduced to zero in a chosen pump temperature field. The intrinsic variation of the SFS mean wavelength λm with fiber temperature is also measured, and a linear variation from 15 to 45 °C with a slop of −0.053 nm/°C for Lf = 100 cm and −0.04 nm/°C for Lf = 55 cm is found.  相似文献   

8.
Low-density networks of single-wall carbon nanotubes have been modified by palladium nanoparticles using an electrochemical method. A major advantage of this approach is that it allows for selective metal deposition on the electrically contacted nanotubes, whereas the remaining substrate surface and the non-contacted tubes remain essentially unaffected. The Pd-decorated networks function as effective hydrogen sensors enabling the detection of hydrogen concentrations as low as 10 ppm at room temperature. The electrochemical metal deposition scheme is promising for the development of sensor arrays suitable for analysing gas mixtures.  相似文献   

9.
Undoped and doped ZnO with 1 at.% (atomic percentage) chromium (Cr) was synthesized by RF reactive co-sputtering for oxygen gas sensing applications. The prepared films showed a highly c-oriented phase with a dominant (0 0 2) peak at a Bragg angle of around 34.2°. The operating temperature of the prepared ZnO sensor was around 350 °C and shifted to around 250 °C for the doped ZnO sensor which is lower than that of previously reported work. The sensitivity of the sensor toward oxygen gas was enhanced by doping ZnO with 1 at.% Cr. Good stability and repeatability of the sensor were demonstrated when tested under different concentration of oxygen atmosphere.  相似文献   

10.
Thin films of undoped and chromium (Cr)-doped zinc oxide (ZnO) were synthesized by RF reactive co-sputtering for oxygen gas sensing applications. The prepared films showed a highly c-axis oriented phase with a dominant (0 0 2) peak appeared at a Bragg angle of around 34.13 °, which was lower than that of the standard reference of ZnO powder (34.42 °). The peak shifted to a slightly higher angle with Cr doping. The operating temperature of the ZnO gas sensor was around 350 °C, which shifted to around 250 °C with Cr-doping. The response of the sensor to oxygen gas was enhanced by doping ZnO with 1 at.% Cr. Impedance spectroscopy analysis showed that the resistance due to grain boundaries significantly contributed to the characteristics of the gas sensor.  相似文献   

11.
The diffusion of N in the group VI B metals Cr and W has been studied in the previously uninvestigated temperature ranges 300°–550 °C (Cr) and 600°–800 °C (W) using ion-beam techniques. Diffusion couples were created by ion-implantation. The timedependent diffusion profiles were monitored by the use of the Nuclear Resonance Broadening (NRB) technique. The linear Arrhenius plots extracted from the measured diffusivities indicate that the diffusivity of implanted N in Cr and W can be described by the activation energyQ=1.39±0.06 eV and 2.32±0.16 eV and the pre-exponential factorD 0=(7.0±7.2)×10–4cm2/s and 4.3±8.3cm2/s, respectively. The solubilities of N in Cr and W from the implanted distributions were found to deviate from those obtained using conventional metallographical methods.  相似文献   

12.
ZnO nanorods, nanobelts, nanowires, and tetrapod nanowires were synthesized via thermal evaporation of Zn powder at temperatures in the range 550-600 °C under flow of Ar or Ar/O2 as carrier gas. Uniform ZnO nanowires with diameter 15-25 nm and tetrapod nanowires with diameter 30-50 nm were obtained by strictly controlling the evaporation process. Our experimental results revealed that the concentration of O2 in the carrier gas was a key factor to control the morphology of ZnO nanostructures. The gas sensors fabricated from quasi-one-dimensional (Q1D) ZnO nanostructures exhibited a good performance. The sensor response to 500 ppm ethanol was up to about 5.3 at the operating temperature 300 °C. Both response and recovery times were less than 20 s. The gas-sensing mechanism of the ZnO nanostructures is also discussed and their potential application is indicated accordingly.  相似文献   

13.
We studied the effect of hydrogen in yttrium nanoparticles on a quartz substrate, using optical spectroscopy and electrical resistance measurements. Pulsed laser deposition is used to obtain the Y clusters in an UHV environment. We show, that these clusters are highly sensitive to monoatomic H1 produced from ambient hydrogen gas pressures, ranging from 10-5 to 50 mbar with our experimental arrangement. The changes of optical and electrical properties due to the chemical reaction within the particles are sufficient to consider this material as a possible sensor for low concentrations of hydrogen. Received 29 November 2000  相似文献   

14.
The diffusion of Al in the group IVa metals Zr and Hf has been studied for the first time in the temperature ranges 600°–800°C (Zr) and 750°–900°C (Hf) using ion-beam techniques. Diffusion couples were created by ion-implantation. The time-dependent diffusion profiles were monitored by the use of the Nuclear Resonance Broadening (NRB) technique. The linear Arrhenius plots extracted from the measured diffusivities indicate that the diffusivity of implanted Al in Zr and Hf can be described by the activation energyQ=2.9±0.2eV and 3.7±0.3eV and the pre-exponential factorD 0=17±42cm2/s and 170±600cm2/s, respectively.  相似文献   

15.
We have deposited diamond-like carbon (DLC) films by radio-frequency magnetron sputtering, and have annealed the films under various conditions to investigate the effects of annealing on the structural properties by visible Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy. The structural ordering of hydrogenated DLC films occurs during annealing below 400 °C in a vacuum and a hydrogen gas atmosphere, while unhydrogenated DLC films are not ordered during annealing even at 700 °C. On the other hand, the ordering and the decrease of the sp3 content are observed for both the films after annealing under an atomic hydrogen exposure. The ordering progresses as the annealing temperature and time are increased. The reduction of the film thickness after annealing is suppressed with increasing annealing temperature. The results suggest that both the preferential etching by atomic hydrogen and the hydrogen evolution encourage the structural changes under an atomic hydrogen exposure.  相似文献   

16.
Optical fiber bend sensor with photonic crystal fiber (PCF) based Mach-Zehnder interferometer (MZI) is demonstrated experimentally. The results show that the PCF-based MZI is sensitive to bending with a sensitivity of 3.046 nm/m−1 and is independent on temperature with a sensitivity of 0.0019 nm/°C, making it the best candidate for temperature insensitive bend sensors. To that end, another kind of bend sensor with higher sensitivity of 5.129 nm/m−1 is proposed, which is constructed by combining an LPFG and an MZI with zero offset at the second splice mentioned above.  相似文献   

17.
Phosphorus-doped n-type homoepitaxial diamond films have been successfully grown at high substrate temperatures (>1000 °C) on high-pressure/high-temperature-synthesized type-Ib single-crystalline diamond (1 0 0) substrates, by using a conventional microwave plasma chemical-vapor-deposition (CVD) system with high power densities. The deposition system employed in this work had an easily exchangeable 36 mm inner-diameter quartz-tube growth chamber. The homoepitaxial diamond films thus grown were characterized by means of Hall-effect measurements with an AC magnetic field, atomic force microscope observations and secondary ion mass spectrometry techniques. The dependences of the substrate temperature (≤1300 °C) and the P/C ratio in the source gas (≤9900 ppm) on the specimen features were investigated. The optimum substrate temperature deduced was ≈1160 °C, which was also applicable to the CVD growth of undoped homoepitaxial diamond layers. The n-type conductions with an activation energy ≈0.6 eV were observed for the specimens with amounts of the P atoms incorporated to ≈1.5 × 1018 cm−3 whereas the doping efficiencies changed from ≈0.06% to ≈0.92% with the growth condition. Possible origins for these results are discussed in relation to the growth mechanism.  相似文献   

18.
The dispersal of CuO catalyst on the surface of the semiconducting SnO2 film is found to be of vital importance for improving the sensitivity and the response speed of a SnO2 gas sensor for H2S gas detection. Ultra-thin CuO islands (8 nm thin and 0.6 mm diameter) prepared by evaporating Cu through a mesh and subsequent oxidation yield a fast response speed and recovery. Ultimately nanoparticles of Cu (average size = 15 nm) prepared by a chemical technique using a reverse micelle method involving the reduction of Cu(NO3)2 by NaBH4 exhibited significant improvement in the gas sensing characteristics of SnO2 films. A fast response speed of ∼14 s and a recovery time of ∼60 s for trace level ∼20 ppm H2S gas detection have been recorded. The sensor operating temperature (130° C) is low and the sensitivity (S = 2.06 × 103) is high. It is found that the spreading over of CuO catalyst in the nanoscale range on the surface of SnO2 allows effective removal of excess adsorbed oxygen from the uncovered SnO2 surface due to spill over of hydrogen dissociated from the H2S-CuO interaction.  相似文献   

19.
A cladding modified fiber optic sensor coated with nanocrystalline ZnO is proposed for ammonia gas detection. As-prepared and annealed zinc oxide (500 and 1200 °C) samples are used as the gas sensing media. The spectral characteristics of the fiber optic gas sensor are studied for various concentrations of ammonia (0–500 ppm). The sensor exhibits linear variation in the spectral peak intensity with the ammonia concentration. The characteristics of the sensor when exposed to ethanol and methanol gases are also studied for gas selectivity. The time response characteristics of the sensor are reported.  相似文献   

20.
The pressure and temperature dependence of 13C NMR of CO2 adsorbed in several porous materials was measured. For CO2 in activated carbon fiber (ACF), the spectrum observed in the pressure range from 0 to 10 MPa consisted of two lines. A very sharp peak at δ = 126 ppm was attributed to free CO2 gas and a broad peak at δ = 123 ppm was attributed to confined CO2 molecules in the micropores of ACF, although CO2 in microporous materials such as zeolites and mesoporous silica, gave only a single peak attributed to free CO2 gas. In the low-pressure region, the peak at δ = 123 ppm shifted to 118 ppm and a very broad peak with a line width of about 200 ppm appeared. This indicates that there are two kinds of CO2 molecules confined in ACF with different rates of molecular motion: one is undergoing isotropic rotation and the other is undergoing anisotropic motion, which rotates around an axis tilted by 30° from the molecular axis. This implies that small pockets with a characteristic diameter exist on the surface of the ACF micropore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号