首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The centrifugal separation of a mixture of particles and fluid in an axisymmetric container is examined. The flow consists of three distinct regions—mixture, sediment and purified fluid—with Ekman boundary layers at the interfaces and walls. In the settling process, the mixture and pure fluid acquire retrograde and prograde rotations relative to the tank. This flow pattern, and the shape and locus of the interface which are easily determined, provide another simple means to compare mixture theory and experiment. It is shown that when the Coriolis force is important, the pure fluid layer on the “outwardly” inclined wall is not thin. Moreover the interface between the mixture and the pure fluid is not perpendicular to the centrifugal force. Both features contrast those of the gravitational Boycott effect. As a consequence, there is no obvious enhancement of settling due to geometrical configuration.  相似文献   

3.
A study is made of the nonstationary laminar boundary layer on a sharp wedge over which a compressible perfect gas flows; the wedge executes slow harmonic oscillations about its front point. It is assumed that the perturbations due to the oscillations are small, and the problem is solved in the linear approximation. It is also assumed that the thickness of the boundary layer is small compared with the thickness of the complete perturbed region. Then in a first approximation the influence of the boundary layer on the exterior inviscid flow can be ignored, and the parameters on the outer boundary of the boundary layer can be taken equal to their values on the body for the case of inviscid flow over the wedge. They are determined from the solution to the inviscid problem that is exact in the framework of the linear formulation. The wall is assumed to be isothermal. The dependence of the viscosity on the temperature is linear. Under these assumptions, the problem of calculating the nonstationary perturbations in the boundary layer on the wedge is a self-similar problem.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 146–151, July–August, 1980.  相似文献   

4.
The paper analyses theoretically the surface vibration induced by a point load moving uniformly along a infinitely long beam embedded in a two-dimensional viscoelastic layer. The beam is placed parallel to the traction-free surface and the layer under the beam is assumed to be a half space. The response due to a harmonically varying load is investigated for different load frequencies. The influence of the layer damping and moving load speed on the level of vibrations at the surface is analysed and analytical closed form solutions in the integral form for the displacement amplitude and the amplitude spectra are derived. Approximate displacement values depending on Young’s modulus and mass density of layers are obtained. The mathematical model is described by the Euler–Bernoulli beam equation, Navier’s elastodynamic equation of motion for the elastic medium and appropriate boundary and continuity conditions. A special approximation method based on the wavelet theory is used for calculation of the displacements at the surface.  相似文献   

5.
Jumps of the bore type arising in a fluid layer with an ice sheet are investigated. These jump structures are considered for a determining mechanism in the form of dispersion due to the presence of an ice sheet. For this purpose a generalized Korteweg-de Vires equation [1] is used. The structure of these jumps consists of a wave zone that expand with time. On the boundary of the wave zone there are transitions between uniform and periodic states which can be locally considered as jumps. Among them are jumps which can be regarded as steady in the coordinate system moving with the boundary of the wave zone. These are jumps between a sequence of solitons and a uniform state (jumps of soliton type) on the boundary of the wave zone and jumps between periodic and uniform states (jumps with radiation). In addition, there are jumps which are unsteady even from the standpoint of a local analysis. In order to investigate the effect of dissipation processes on the jumps considered a system of generalized Boussinesq equations is derived with allowance for bottom slope and bottom and ice friction. The jump damping process is investigated numerically. This system of equations also makes it possible to investigate undamped jumps of the floodwater wave type. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 139–146. July–August, 2000.  相似文献   

6.
The onset of convection in a rarefield gas saturating a horizontal layer of a porous medium has been investigated using both Darcy and Brinkman models. It is assumed that due to rarefaction both velocity slip and temperature jump exist at the boundaries. The results show that (i) when the degree of rarefaction increases the critical Rayleigh number as well as the critical wave number for the onset of convection increases, (ii) stabilizing effect of temperature jump is more than that of velocity slip, (iii) Darcy model is seen to be the most stable one when compared to Brinkman model or the pure gaseous layer (i.e. in the absence of porous medium).  相似文献   

7.
Similarity solutions are obtained for unsteady, one-dimensional self-similar flow behind a strong shock wave, driven by a moving piston, in a dusty gas. The dusty gas is assumed to consist of a mixture of small solid particles and a non-ideal gas, in which solid particles are continuously distributed. It is assumed that the equilibrium flow-condition is maintained and variable energy input is continuously supplied by the piston. Solutions are obtained under both the isothermal and adiabatic conditions of the flow-field. The spherical case is worked out in detail to investigate to what extent the flow-field behind the shock is influenced by the non-idealness of the gas in the mixture as well as by the mass concentration of the solid particles, by the ratio of density of the solid particles to the initial density of the mixture and by the energy input due to moving piston. A comparison is also made between isothermal and adiabatic cases.  相似文献   

8.
Three simple two-dimensional streaming motions of a mixture of solid particles with a continuous carrier fluid, or gas, in the presence of the gravity field are considered. These include flow of a mixture over an infinite stationary rigid plane perpendicular to the direction of the gravity field, flow near an oscillating rigid plane and flow in a mixture induced by a suddenly accelerated plane. The nature of the boundary conditions at the interface between a layer of sediment settling on the rigid boundary and the mixture above it suggests an introduction of the independent variables that enable simple analytical expressions for the solutions of the first two flows and a numerical solution by means of a Laplace transform in the last case.  相似文献   

9.
The balances of mass, linear momentum and energy for a continuum provide jump relations between values of the physical variables on the two sides of a singular surface, either a boundary of the medium or an interior surface. In the case of a mixture, an overlap of interacting continua, there are jump relations for each constituent. While an elementary phase change front across which one phase of a constituent is transformed completely to a different phase can be treated as a single constituent, more general situations have co-existing phases on one side of the front, each with their own density, velocity, stress and internal energy fields, which must be treated as separate constituents. The phase change is now a mass transfer between constituents which becomes a surface production term in the mass balance jump relation for each constituent. In turn this implies surface production contributions to the momentum and energy relations associated with the surface mass transfer, including interaction body force and energy transfer contributions as well as the direct transfer terms. The general jump relations with such surface production contributions are formulated, and are illustrated for a number of situations arising in polythermal ice sheets and wet snow packs.  相似文献   

10.
In this paper analytical solutions for the steady fully developed laminar fluid flow in the parallel-plate and cylindrical channels partially filled with a porous medium and partially with a clear fluid are presented. The Brinkman-extended Darcy equation is utilized to model the flow in a porous region. The solutions account for the boundary effects and for the stress jump boundary condition at the interface recently suggested by Ochoa-Tapia and Whitaker. The dependence of the velocity on the Darcy number and on the adjustable coefficient in the stress jump boundary condition is investigated. It is shown that accounting for a jump in the shear stress at the interface essentially influences velocity profiles.  相似文献   

11.
We model long rod-like molecules, such as DNA and coiled-coil proteins, as one-dimensional continua with a multi-well stored energy function. These molecules suffer a structural change in response to large forces, characterized by highly typical force-extension behavior. We assume that the structural change proceeds via a moving folded/unfolded interface, or phase boundary, that represents a jump in strain and is governed by the Abeyaratne–Knowles theory of phase transitions. We solve the governing equations using a finite difference method with moving nodes to represent phase boundaries. Our model can reproduce the experimental observations on the overstretching transition in DNA and coiled-coils and makes predictions for the speed at which the interface moves. We employ different types of kinetic relations to describe the mobility of the interface and show that this leads to different classes of experimentally observed force-extension curves. We make connections with several existing theories, experiments and simulation studies, thus demonstrating the effectiveness of the phase transitions-based approach in a biological setting.  相似文献   

12.
The onset of penetrative convection in an infinite horizontal fluid layer bounded by isothermal rigid or free nondeformable surfaces is numerically examined. It is assumed that the specific volume of the fluid depends quadratically on temperature and reaches a minimum inside the layer. The isothermally incompressible fluid convection model in which, as distinct from the Oberbeck-Boussinesq approximation, the thermal expansion is not assumed to be small is considered. Both the neutral stability curves of the conductive regime and the amplitudes of two-dimensional periodic and three-dimensional doubly-periodic convective flow are calculated. The results are compared with those previously obtained for the equations of penetrative convection in the Boussinesq approximation.Rostov-on-Don. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 40–52, March–April, 1996.  相似文献   

13.
Recently, the authors have focused on the shear behavior of interface between granular soil body and very rough surface of moving bounding structure. For this purpose, they have used finite element method and a micro-polar elasto-plastic continuum model. They have shown that the boundary conditions assumed along the interface have strong influences on the soil behavior. While in the previous studies, only very rough bounding interfaces have been taken into account, the present investigation focuses on the rough, medium rough and relatively smooth interfaces. In this regard, plane monotonic shearing of an infinite extended narrow granular soil layer is simulated under constant vertical pressure and free dilatancy. The soil layer is located between two parallel rigid boundaries of different surface roughness values. Particular attention is paid to the effect of surface roughness of top and bottom boundaries on the shear behavior of granular soil layer. It is shown that the interaction between roughness of bounding structure surface and the rotation resistance of bounding grains can be modeled in a reasonable manner through considered Cosserat boundary conditions. The influence of surface roughness is investigated on the soil shear strength mobilized along the interface as well as on the location and evolution of shear localization formed within the layer. The obtained numerical results have been qualitatively compared with experimental observations as well as DEM simulations, and acceptable agreement is shown.  相似文献   

14.
A model for combined mass and heat transfer during nonisothermal gas absorption in a two-phase gasliquid bubbly medium with a high gas content and/or large times of gas-liquid contact is suggested. Diffusion and thermal interactions between bubbles is taken into account in the approximation of a cellular model of a bubbly medium whereby a bubbly medium is viewed as a periodic structure consisting of identical spherical cells with periodic boundary conditions at a cell boundary. Distribution of concentration of dissolved gas, temperature distribution in liquid and coefficients of mass and heat transfer during nonisothermal absorption of a soluble pure gas from a bubble by liquid are determined. In the limiting case of absorption without heat release the derived formulas recover the expressions for isothermal absorption.  相似文献   

15.
The Monte Carlo method [1, 2] is used to solve the linearized Boltzmann equation for the problem of heat transfer between parallel plates with a wall temperature jump (Knudsen layer flow). The linear Couette problem can be separated into two problems: the problem of pure shear and the problem of heat transfer between two parallel plates. The Knudsen layer problem is also linear [3] and, like the Couette problem, can be separated into the velocity slip and temperature jump problems. The problems of pure shear and velocity slip have been examined in [2].The temperature jump problem was examined in [4] for a model Boltzmann equation. For the linearized Boltzmann equation the problems noted above have been solved either by expanding the distribution function in orthogonal polynomials [5–7], which yields satisfactory results for small Knudsen numbers, or by the method of moments, with an approximation for the distribution function selected from physical considerations in the form of polynomials [8–10]. The solution presented below does not require any assumptions on the form of the distribution function.The concrete calculations were made for a molecular model that we call the Maxwell sphere model. It is assumed that the molecules collide like hard elastic spheres whose sections are inversely proportional to the relative velocity of the colliding molecules. A gas of these molecules is close to Maxwellian or to a gas consisting of pseudo-Maxwell molecules [3].  相似文献   

16.
An analytical study of viscous dissipation effect on the fully developed forced convection Couette flow through a parallel plate channel partially filled with porous medium is presented. A uniform heat flux is imposed at the moving plate while the fixed plate is insulated. In the fluid-only region the flow field is governed by Navier–Stokes equation while the Brinkman-extended Darcy law relationship is considered in the fully saturated porous medium. The interface conditions are formulated with an empirical constant β due to the stress jump boundary condition. Fluid properties are assumed to be constant and the longitudinal heat conduction is neglected. A closed-form solution for the velocity and temperature distributions and also the Nusselt number in the channel are obtained and the viscous dissipation effect on these profiles is briefly investigated.  相似文献   

17.
This work is concerned with an extension of classical mixture theory to the case in which the mixture contains an evolving non-material surface on which the constituents may interact, as well as be created and/or annihilated. The formulation of constituent and mixture jump balance relations on/across such a non-material surface proceed by analogy with the standard volume or bulk constituent and mixture balance relations. On this basis, we derive various forms of the constituent mass, momentum, energy and entropy balances assuming (1), that the constituent in question is present on both sides of the moving, non-material surface, and (2), that it is created or annihilated on this surface, as would be the case in a phase transition. In particular, we apply the latter model to the transition between cold and temperate ice found in polythermal ice masses, obtaining in the process the conditions under which melting or freezing takes place at this boundary. On a more general level, one of the most interesting aspects of this formulation is that it gives rise to certain combinations of the limits of constituent and mixture volume fields on the moving mixture interface which can be interpreted as the corresponding surface form of these fields, leading to the possibility of exploiting the surface entropy inequality to obtain restrictions on surface constitutive relations.  相似文献   

18.
Modeling the rate of fluid release from moving partially saturated nonwoven sheets in contact with a solid surface is a challenge, as the release rate depends on many parameters, some of which are difficult to quantify. In this paper, we report on a diffusion-controlled boundary treatment which we have developed to simulate fluid release from partially saturated porous materials onto surfaces with different hydrophilicy. The new boundary treatment considers the solid impermeable surface as a fictitious porous layer with a known fluid diffusive coefficient. Motion of the porous sheet on the surface is incorporated in the simulations by periodically resetting the saturation of the fictitious layer equal to zero, with a period obtained from the sheet’s speed of motion. Fluid transport inside the fibrous sheets is calculated by solving Richards’ equation of two-phase flows in porous media. Our numerical simulations are accompanied with experimental data obtained using a custom-made test rig for the release of liquid from partially saturated media at different speeds. It is demonstrated that the novel mathematical formulations presented here can correctly predict the rate of fluid release from moving fibrous sheets onto solid surfaces with different hydrophilicity as a function of time.  相似文献   

19.
The sliding friction of solids at high speed and under heavy load may be accompanied by a transition to the plastic or fluid state in the friction contact zone [1]. The stage corresponding to a developed fluid layer is investigated without taking into account the plastic deformation of the rubbing bodies; it is assumed that all the heat released is expended exclusively on melting the solid. Previous attempts to investigate this stage theoretically have been based on the approximation of a fluid layer of constant thickness and the use of the heat balance equation [1, 2]. Here, the velocity and temperature profiles are approximated by relations quadratic in the transverse coordinate with coefficients that depend on the longitudinal coordinate. These are determined from the boundary conditions and the integral relations of boundary layer theory. The relations obtained are used to determine the rate at which a hot rotating ring melts through a block of ice.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 30–34, May–June, 1990.  相似文献   

20.
The problem of determining the specific mass flow of sediment entrained by a liquid flow passing above the sand bottom is studied. The boundary-value problem for a two-phase mixture of the liquid and solid particles in the active bottom layer is solved, and a general formula for determining the specific mass flow of sediment is derived. Constraints imposed on the rheological model of a moving mixture, which allow the phenomenological parameter (concentration of particles in the active layer of the mixture) to be eliminated from the model, are found. Within the framework of the proposed rheological model, the equation of riverbed deformations in the case of a sand bottom is obtained. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 3, pp. 131–139, May–June, 2009.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号