首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We approximate the objective function of the fixed charge network flow problem (FCNF) by a piecewise linear one, and construct a concave piecewise linear network flow problem (CPLNF). A proper choice of parameters in the CPLNF problem guarantees the equivalence between those two problems. We propose a heuristic algorithm for solving the FCNF problem, which requires solving a sequence of CPLNF problems. The algorithm employs the dynamic cost updating procedure (DCUP) to find a solution to the CPLNF problems. Preliminary numerical experiments show the effectiveness of the proposed algorithm. In particular, it provides a better solution than the dynamic slope scaling procedure in less CPU time. Research was partially supported by NSF and Air Force grants.  相似文献   

2.
In the present paper the fixed charge transportation problem under uncertainty, particularly when parameters are given in interval forms, is formulated. In this case it is assumed that both cost and constraint parameters are arrived in interval numbers. Considering two different order relations for interval numbers, two solution procedures are developed in order to obtain an optimal solution for interval fixed charge transportation problem (IFCTP). In addition, the two order relations are compared to give a better comprehension of their differences. Furthermore, numerical examples are provided to illustrate each of solution procedures.  相似文献   

3.
We study the eigenvalue problems for a class of positive nonlinear operators defined on a cone in a Banach space. Using projective metric techniques and Schauder’s fixed-point theorem, we establish existence, uniqueness, monotonicity and continuity results for the eigensolutions. Moreover, the method leads to a result on the existence of a unique fixed point of the operator. Applications to nonlinear boundary-value problems, to differential delay equations and to matrix equations are considered.   相似文献   

4.
We construct some classes of test problems of minimizing a concave or, more general, quasiconcave function over a polyhedral set. These test problems fulfil the general requirement that they have a global solution at a known point which is suitably chosen on the boundary of the feasible set.  相似文献   

5.
This paper considers a two-stage distribution problem of a supply chain that is associated with a fixed charge. Two kinds of cost are involved in this problem: a continuous cost that linearly increases with the amount transported between a source and a destination, and secondly, a fixed charge, that incurs whenever there exists a transportation of a non-zero quantity between a source and a destination. The objective criterion is the minimisation of the total cost of distribution. A genetic algorithm (GA) that belongs to evolutionary search heuristics is proposed and illustrated. The proposed methodology is evaluated for its solution quality by comparing it with the approximate and lower bound solutions. Thus, the comparison reveals that the GA generates better solution than the approximation method and is capable of providing solution either equal or closer to the lower bound solution of the problem.  相似文献   

6.
This paper formulates the minimum concave cost network flow (MCCNF) problem as a mixed integer program and solves this program using a new branch and bound algorithm. The algorithm combines Driebeek's up and down penalties with a new technique referred to as the simple bound improvement (SBI) procedure. An efficient numerical method for the SBI procedure is described and computational results are presented which show that the SBI procedure reduces both the in-core storage and the CPU time required to solve the MCCNF problem. In fact, for problems with over 200 binary decision variables, the SBI procedure reduced the in-core storage by more than one-third and the CPU time by more than 40 percent.  相似文献   

7.
8.
We study the multicommodity network flow problem with fixed costs on paths, with specific application to the empty freight car distribution process of a rail operator. The classification costs for sending a group of cars do not depend on the number of cars in the group, as long as the group is kept together as one unit. Arcs correspond to trains, so we have capacity restrictions on arcs but fixed costs on the paths corresponding to routes for groups of cars. As solution method, we propose a Lagrangian based heuristic using dual subgradient search and primal heuristics based on path information of the Lagrangian subproblem solutions. The method illustrates several ways of exploiting the specific structures of the problem. Computational tests indicate that the method is able to generate fairly good primal feasible solutions and lower bounds on the optimal objective function value.  相似文献   

9.
The paper deals with the numerical solution of the quasi-variational inequality describing the equilibrium of an elastic body in contact with a rigid foundation under Coulomb friction. After a discretization of the problem by mixed finite elements, the duality approach is exploited to reduce the problem to a sequence of quadratic programming problems with box constraints, so that efficient recently proposed algorithms may be applied. A new variant of this method is presented. It combines fixed point with block Gauss–Seidel iterations. The method may be also considered as a new implementation of fixed point iterations for a sequence of problems with given friction. Results of numerical experiments are given showing that the resulting algorithm may be much faster than the original fixed point method and its efficiency is comparable with the solution of frictionless contact problems.  相似文献   

10.
We consider the problem of finding a feasible flow in a directed networkG = (N,A) in which each nodei N has a supplyb(i), and each arc(i,j) A has a zero lower bound on flow and an upper boundu ij . It is well known that this feasibility problem can be transformed into a maximum flow problem. It is also well known that there is no feasible flow in the networkG if and only if there is a subsetS of nodes such that the net supplies of the nodes inS exceeds the capacity of the arcs emanating fromS. Such a setS is called awitness of infeasibility (or, simply, awitness) of the network flow problem. In the case that there are many different witnesses for an infeasible problem, a small cardinality witness may be preferable in practice because it is generally easier for the user to assimilate, and may provide more guidance to the user on how to identify the cause of the infeasibility. Here we show that the problem of finding a minimum cardinality witness is NP-hard. We also consider the problem of determining aminimal witness, that is, a witnessS such that no proper subset ofS is also a witness. In this paper, we show that we can determine a minimal witness by solving a sequence of at mostn maximum flow problems. Moreover, if we use the preflow-push algorithm to solve the resulting maximum flow problems and organize computations properly, then the total time taken by the algorithm is comparable to that of solving a single maximum flow problem. This approach determines a minimal cardinality witness in O(n 2 m 1/2) time using simple data structures and in O(nm logn) time using the standard implementation of the dynamic tree data structures. We also show that the recognition version of the minimal witness problem is equivalent to a recognition version of a related problem known as theminimum rooted cut problem. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.Corresponding author.  相似文献   

11.
This paper addresses a method for solving two classes of production-transportation problems with concave production cost. By exploiting a special network structure both problems are reduced to a kind of resource allocation problem. It is shown that the resultant problem can be solved by using dynamic programming in time polynomial in the number of supply and demand points and the total demand.The author was partially supported by Grand-in-Aid for Scientific Research of the Ministry of Education, Science and Culture, Grant No. (C)05650061.  相似文献   

12.
In this paper, we introduce two iterative schemes by the general iterative method for finding a common element of the set of an equilibrium problem and the set of fixed points of a nonexpansive mapping in a Hilbert space. Then, we prove two strong convergence theorems for nonexpansive mappings to solve a unique solution of the variational inequality which is the optimality condition for the minimization problem. These results extended and improved the corresponding results of Marino and Xu [G. Marino, H.K. Xu, A general iterative method for nonexpansive mapping in Hilbert spaces, J. Math. Anal. Appl. 318 (2006) 43-52], S. Takahashi and W. Takahashi [S. Takahashi, W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (1) (2007) 506-515], and many others.  相似文献   

13.
In this paper, we introduce an iterative scheme by the viscosity approximation method for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of a nonexpansive mapping in a Hilbert space. Then, we prove a strong convergence theorem which is connected with Combettes and Hirstoaga's result [P.L. Combettes, S.A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005) 117-136] and Wittmann's result [R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. 58 (1992) 486-491]. Using this result, we obtain two corollaries which improve and extend their results.  相似文献   

14.
Finitely convergent algorithms for solving rank two and three bilinear programming problems are proposed. A rank k bilinear programming problem is a nonconvex quadratic programming problem with the following structure: % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4baFfea0dXde9vqpa0lb9% cq0dXdb9IqFHe9FjuP0-iq0dXdbba9pe0lb9hs0dXda91qaq-xfr-x% fj-hmeGabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaacaWFTbGaa8% xAaiaa-5gacaWFPbGaa8xBaiaa-LgacaWF6bGaa8xzaiaa-bcacaWF% 7bacbiGaa43yamaaDaaaleaacaGFWaaabaGaa4hDaaaakiaa+Hhaca% GFRaGaa4hzamaaDaaaleaacaGFWaaabaGaa4hDaaaakiaa+LhacaGF% RaWaaabuaeaacaGFJbWaa0baaSqaaiaa+PgaaeaacaGF0baaaOGaam% iEaiabl+y6NjaadsgadaqhaaWcbaGaamOAaaqaaiaadshaaaGccaWG% 5bGaaiiFaaWcbaGaa8NAaiaa-1dacaWFXaaabeqdcqGHris5aOGaa4% hEaiabgIGiolaa+HfacaGFSaGaa4xEaiabgIGiolaa+LfacaWF9bGa% a8hlaaaa!5D2E!\[minimize \{ c_0^t x + d_0^t y + \sum\limits_{j = 1} {c_j^t xd_j^t y|} x \in X,y \in Y\} ,\]where X Rn1 and Y R n2 are non-empty and bounded polytopes. We show that a variant of parametric simplex algorithm can solve large scale rank two bilinear programming problems efficiently. Also, we show that a cutting-cake algorithm, a more elaborate variant of parametric simplex algorithm can solve medium scale rank three problems.This research was supported in part by Grant-in-Aid for Scientific Research of the Ministry of Education, Science and Culture, Grant No. 63490010.  相似文献   

15.
In this paper, we present an iterative algorithm for finding a common element of the set of solutions of a mixed equilibrium problem and the set of fixed points of an infinite family of nonexpansive mappings and the set of a variational inclusion in a real Hilbert space. Furthermore, we prove that the proposed iterative algorithm has strong convergence under some mild conditions imposed on algorithm parameters.  相似文献   

16.
The present paper is divided into two parts. In the first part, we introduce implicit and explicit iterative schemes for finding the fixed point of a nonexpansive mapping defined on the closed convex subset of a real Hilbert space. We establish results on the strong convergence of the sequences generated by the proposed schemes to a fixed point of a nonexpansive mapping. Such a fixed point is also a solution of a variational inequality defined on the set of fixed points. In the second part, we propose implicit and explicit iterative schemes for finding the approximate minimizer of a constrained convex minimization problem and prove that the sequences generated by our schemes converge strongly to a solution of the constrained convex minimization problem. Such a solution is also a solution of a variational inequality defined over the set of fixed points of a nonexpansive mapping. The results of this paper extend and improve several results presented in the literature in the recent past.  相似文献   

17.
Many problems encountered in applied mathematics can be recast as the problem of selecting a particular common fixed point of a countable family of quasi-nonexpansive operators in a Hilbert space. We propose two iterative methods to solve such problems. Our convergence analysis is shown to cover a variety of existing results in this area. Applications to solving monotone inclusion and equilibrium problems are considered.  相似文献   

18.
The purpose of this paper is to investigate the problem of finding a common element of the set of solutions of a generalized equilibrium problem (for short, GEP) and the set of fixed points of a nonexpansive mapping in the setting of Hilbert spaces. By using well-known Fan-KKM lemma, we derive the existence and uniqueness of a solution of the auxiliary problem for GEP. On account of this result and Nadler’s theorem, we propose an iterative scheme by the viscosity approximation method for finding a common element of the set of solutions of GEP and the set of fixed points of a nonexpansive mapping. Furthermore, it is proven that the sequences generated by this iterative scheme converge strongly to a common element of the set of solutions of GEP and the set of fixed points of a nonexpansive mapping.  相似文献   

19.
In this paper, we consider the minimum flow problem on network flows in which the lower arc capacities vary with time. We will show that this problem for set {0, 1, … , T} of time points can be solved by at most n minimum flow computations, by combining of preflow-pull algorithm and reoptimization techniques (no matter how many values of T are given). Running time of the presented algorithm is O(n2m).  相似文献   

20.
We present algorithms for the single-source uncapacitated version of the minimum concave cost network flow problem. Each algorithm exploits the fact that an extreme feasible solution corresponds to a sub-tree of the original network. A global search heuristic based on random extreme feasible initial solutions and local search is developed. The algorithm is used to evaluate the complexity of the randomly generated test problems. An exact global search algorithm is developed, based on enumerative search of rooted subtrees. This exact technique is extended to bound the search based on cost properties and linear underestimation. The technique is accelerated by exploiting the network structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号