首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Physics Reports》1997,278(1):1-77
We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; the resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo (SMMC) methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, the thermal and rotational behavior of rare-earth and γ-soft nuclei, and the calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed.  相似文献   

2.
Quantum Monte Carlo calculations using realistic two- and three-nucleon interactions are presented for nuclei with up to ten nucleons. Our Green's function Monte Carlo calculations are accurate to ∼1-2% for the binding energy. We have constructed Hamiltonians using the Argonne v18 NN interaction and reasonable three-nucleon interactions that reproduce the energies of these nuclear states with only ∼500 keV rms error. Other predictions, such as form factors, decay rates, and spectroscopic factors also agree well with data. Some of these results are presented to show that ab initio calculations of light nuclei are now well in hand. Received: 1 May 2001 / Accepted: 4 December 2001  相似文献   

3.
We calculate the ground-state energy of (4)He, (8)He, (16)O, and (40)Ca using the auxiliary field diffusion Monte Carlo method in the fixed-phase approximation and the Argonne v(6)' interaction which includes a tensor force. Comparison of our light nuclei results to those of Green's function Monte Carlo calculations shows the accuracy of our method for both open and closed-shell nuclei. We also apply it to (16)O and (40)Ca to show that quantum Monte Carlo methods are now applicable to larger nuclei.  相似文献   

4.
With the progress of LSI technology, the electronic device size is scaled down to the sub 0.1μ m region. In such an ultrasmall device, it is indispensable to take quantum mechanical effects into account in device modeling. In this paper, we present a newly developed quantum Monte Carlo device simulation applicable to ultrasmall semiconductor devices. In this model, the quantum effects are represented in terms of quantum mechanically corrected potential in the classical Boltzmann equation. It is demonstrated that the quantum transport effects such as tunneling and energy quantization in ultrasmall semiconductor devices are obtained for the first time by using the standard Monte Carlo techniques.  相似文献   

5.
We discuss lattice simulations of light nuclei at leading order in the chiral effective field theory. Using lattice pion fields and auxiliary fields, we include the physics of instantaneous one-pion exchange and the leading-order S-wave contact interactions. We also consider higher-derivative contact interactions which adjust the S-wave scattering amplitude at higher momenta. By construction our lattice path integral is positive definite in the limit of exact Wigner SU(4) symmetry for any even number of nucleons. This SU(4) positivity and the approximate SU(4) symmetry of the low-energy interactions play an important role in suppressing sign and phase oscillations in Monte Carlo simulations. We assess the computational scaling of the lattice algorithm for light nuclei with up to eight nucleons and analyze in detail calculations of the deuteron, triton, and helium-4.  相似文献   

6.
7.
A short review is given concerning the quantum statistical Monte Carlo method based on the equivalence theorem(1) thatd-dimensional quantum systems are mapped onto (d+1)-dimensional classical systems. The convergence property of this approximate tansformation is discussed in detail. Some applications of this geneal appoach to quantum spin systems are reviewed. A new Monte Carlo method, “thermo field Monte Carlo method,” is presented, which is an extension of the projection Monte Carlo method at zero temperature to that at finite temperatures. Invited talk presented at “Frontiers of Quantum Monte Carlo,” Los Alamos National Laboratory, September 3–6, 1985.  相似文献   

8.
The effects of strong inelastic scattering on carrier transport over and capture into the quantum wells of quantum well lasers are simulated. In contrast to most semiconductor devices, strong scattering is beneficial to the operation of quantum well lasers. However, such strong inelastic scattering in nanostructures can be expected to produce intermediate degrees of phase coherence, limiting the applicability of both classical models, such as Bethe thermionic emission theory, and commonly used quantum mechanical treatments, such as Fermi's Golden Rule. Two computational approaches are demonstrated for simulating such transport with intermediate degrees of phase coherence. First, absorbing potentials are used within Schrödinger's equation to represent inelastic scattering. This simple approach both exhibits much of the essential physics of such transport and is computationally efficient. Then a more rigorous approach, Schrödinger equation (based) Monte Carlo (SEMC), is demonstrated. While SEMC is rigorously quantum mechanical, the numerical algorithm has more in common with semiclassical Monte Carlo methods than path integral-based quantum Monte Carlo methods. Both of these methods demonstrate nonlinear variations in carrier capture with variations in scattering, and the destruction of quantum resonances for transmission over the quantum well.  相似文献   

9.
Large-amplitude fluctuations around the mean-field are important in hot finite Fermi systems. In the quantum Monte Carlo approach these fluctuations are taken into account exactly but often lead to a sign problem. A practical solution to the sign problem in the framework of the nuclear shell model allows realistic calculations in model spaces that are much larger than those that can be treated by conventional diagonalization methods. Recent applications of the Monte Carlo methods for microscopic calculations of collectivity and level densities in heavy nuclei are presented. Presented at the International Conference on “Atomic Nuclei and Metallic Clusters”, Prague, September 1–5, 1997. This work was supported in part by the Department of Energy grant No. DE-FG-0291-ER-40608.  相似文献   

10.
For many decades, quantum chemical method development has been dominated by algorithms which involve increasingly complex series of tensor contractions over one-electron orbital spaces. Procedures for their derivation and implementation have evolved to require the minimum amount of logic and rely heavily on computationally efficient library-based matrix algebra and optimised paging schemes. In this regard, the recent development of exact stochastic quantum chemical algorithms to reduce computational scaling and memory overhead requires a contrasting algorithmic philosophy, but one which when implemented efficiently can achieve higher accuracy/cost ratios with small random errors. Additionally, they can exploit the continuing trend for massive parallelisation which hinders the progress of deterministic high-level quantum chemical algorithms. In the Quantum Monte Carlo community, stochastic algorithms are ubiquitous but the discrete Fock space of quantum chemical methods is often unfamiliar, and the methods introduce new concepts required for algorithmic efficiency. In this paper, we explore these concepts and detail an algorithm used for Full Configuration Interaction Quantum Monte Carlo (FCIQMC), which is implemented and available in MOLPRO and as a standalone code, and is designed for high-level parallelism and linear-scaling with walker number. Many of the algorithms are also in use in, or can be transferred to, other stochastic quantum chemical methods and implementations. We apply these algorithms to the strongly correlated chromium dimer to demonstrate their efficiency and parallelism.  相似文献   

11.
The uniform electron fluid is the reference model for density functional calculations. Even for this system, many-body perturbation theory, and related methods become questionable when the density parameter rs exceeds unity. Hence, quantum Monte Carlo (QMC) simulation has been almost the only applicable method. We review a new approach, which uses a mapping of the quantum fluid to a classical Coulomb fluid, based on density-functional concepts. It is applicable at finite temperatures and arbitrary spin polarizations as well, and correctly recovers even the logarithmic terms in the exchange and correlations energies close to T=0. We show by detailed comparison with available QMC data that the method yields accurate pair-distribution functions, spin-dependent energies, static local-field factors, Landau parameter-based quantities like m∗ and g∗, for strongly coupled electron fluids.  相似文献   

12.
We study the localizable entanglement in large one-dimensional anisotropic XYZ ferromagnetic Heisenberg chains interacting with a uniform magnetic field. With the use of quantum Monte Carlo simulations we calculate the bounds of localizable entanglement by means of the correlation functions. The present quantum Monte Carlo method has the advantage over existing methods that it can be readily applied to fully anisotropic magnetic chains.  相似文献   

13.
《Nuclear Physics A》1999,650(2):199-212
Two methods to deal with final state interactions in (e,e′p) reactions in nuclei are compared. One of them uses a Monte Carlo semiclassical approach while the other uses a statistical quantum mechanical approach. The comparison serves to give support to both approaches, showing at the same time their limitations.  相似文献   

14.
A qualitative model for solid mixtures of diatomic molecules, where one species (called CO, to be specific) carries both a dipole moment and a quadrupole moment, while the other species (calledN 2) has only a quadrupole moment, is studied by Monte Carlo methods. We use spinsS i =±1 to represent the orientations of the CO electric dipole moment, if the lattice sitei is taken by a CO molecule, whileS i =0 if the site is taken by anN 2 molecule. Assuming nearest-neighbor antiferroelectric interactions between CO molecules, and a bilinear dipole-quadrupole coupling between CO andN 2, the randomly quenchedN 2 molecules act like random fields do in the random field Ising model. In previous work it was already shown that this crude model is in very good agreement with experimental data in two dimensions (adsorbed layers), where the random fields induces a rounding of the transition. Here Monte Carlo simulations of the three-dimensional version of this model are presented and analyzed with finite size scaling concepts. As expected from the theory, a behaviour qualitatively different from the two-dimensional case is detected. The Monte Carlo data provide qualitative evidence that the random field induces crossover to an universality class with critical exponents distinct from the pure Ising model, but it is not feasible to us to study large enough systems that would allow a reliable estimation of these exponents. But the results show that dilution without dipole-quadrupole coupling has much less drastic effects on the critical behavior, and that in the presence of this coupling very small impurity concentrations do indeed change the critical behavior.This paper is dedicated to Professor Herbert Wagner on the occasion of his 60th birthday  相似文献   

15.
We propose a new Monte Carlo method for calculating eigenvalues of transfer matrices leading to free energies and to correlation lengths of classical and quantum many-body systems. Generally, this method can be applied to the calculation of the maximum eigenvalue of a nonnegative matrix  such that all the matrix elements of Âk are strictly positive for an integerk. This method is based on a new representation of the maximum eigenvalue of the matrix  as the thermal average of a certain observable of a many-body system. Therefore one can easily calculate the maximum eigenvalue of a transfer matrix leading to the free energy in the standard Monte Carlo simulations, such as the Metropolis algorithm. As test cases, we calculate the free energies of the square-lattice Ising model and of the spin-1/2XY Heisenberg chain. We also prove two useful theorems on the ergodicity in quantum Monte Carlo algorithms, or more generally, on the ergodicity of Monte Carlo algorithms using our new representation of the maximum eigenvalue of the matrixÂ.  相似文献   

16.
In recent years, the understanding and accurate simulation of carbon nanotube-based devices has become very challenging. Conventional simulation tools of microelectronics are necessary to envision the performance and use of nanotube transistors and circuits, but the models need to be refined to properly describe the full complexity of such novel type of devices at the nanoscale. Indeed, many issues such as contact resistance, low dimensional electrostatics and screening effects, as well as nanotube doping or functionalization, demand for more accurate quantum approaches. In this article, we review our recent progress on multiscale simulations which aim at bridging first principles calculations with compact modelling, including the comparison between semi-classical Monte Carlo and quantum transport approaches. To cite this article: C. Adessi et al., C. R. Physique 10 (2009).  相似文献   

17.
用巨正则量子Monte Carlo方法,计算了二维单带Hubbard模型的局域磁矩、磁化率、交错磁化率和内能等物理量.结果表明,用巨正则量子Monte Carlo方法能够统一地研究Hubbard模型的关联强度从弱至强区域的性质,它是处理强关联多体系统的有效方法.  相似文献   

18.
The nuclear mass calculation is discussed in terms of large-scale shell model calculations. First, the development and limitations of the conventional shell model calculations are mentioned. In order to overcome the limitations, the Quantum Monte Carlo Diagonalization (QMCD) method has been proposed. The basic formulation and features of the QMCD method are presented as well as its application to the nuclear shell model, referred to as Monte Carlo Shell Model (MCSM). The MCSM provides us with a breakthrough in shell model calculations: the structure of low-lying states can be studied with realistic interactions for a nearly unlimited variety of nuclei. Thus, the MCSM can contribute significantly to the study of nuclear masses. An application to N∼20 unstable nuclei far from the β-stability line is mentioned. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
I discuss Monte Carlo algorithms for quantum many-body systems that employ an auxiliary field to linearize a two-body interaction. These reduce the evaluation of the partition function to sampling many one-body evolutions in a fluctuating field. Fermions and bosons are treated on an equal footing. Applications to potential models and to quantum spin systems are discussed. This work was supported in part by the National Science Foundation, grants PHY82-07332 and PHY85-05682. The potential-model studies were done in collaboration with G. Sugiyama, while A. Khan and T. Troudet were responsible for the work on the quantum spin systems.  相似文献   

20.
There exists presently considerable debate over the question whether local Coulomb interactions can explain the absence of the small e g Fermi surface hole pockets in photoemission studies of Na0.3CoO2. By comparing dynamical mean field results for different single particle Hamiltonians and exact diagonalization as well as quantum Monte Carlo treatments, we show that, for realistic values of the Coulomb energy U and Hund exchange J, the e g pockets can be slightly enhanced or reduced compared to band structure predictions, but they do not disappear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号