首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple and rapid liquid chromatography with tandem mass spectrometry method has been developed and validated for the determination of rabeprazole and its two active metabolites, rabeprazole thioether and desmethyl rabeprazole thioether, in human urine using donepezil as the internal standard. The sample preparation procedure involved a simple dilution of urine sample with methanol (1:3, v/v). The chromatographic separation was achieved on a Hedera ODS‐2 C18 column using a mixture of methanol/10 mmol/L ammonium acetate solution (containing 0.05% formic acid; 55:45, v/v) as the mobile phase. The method was validated over the concentration ranges of 0.15–100 ng/mL for rabeprazole, 0.30–400 ng/mL for rabeprazole thioether, and 0.05–100 ng/mL for desmethyl rabeprazole thioether. The established method was highly sensitive with a lower limit of quantification of 0.15 ng/mL for rabeprazole, 0.30 ng/mL for rabeprazole thioether, and 0.05 ng/mL for desmethyl rabeprazole thioether. The intra‐ and interbatch precision was <4.5% for the low, medium, and high quality control samples of all the analytes. The recovery of the analytes was in the range 95.4–99.0%. The method was successfully applied to a urinary excretion profiles after intravenous infusion administration of 20 mg rabeprazole sodium in healthy volunteers.  相似文献   

2.
A simple and sensitive high-performance liquid chromatographic procedure to determine loxoprofen and its diastereomeric alcohol metabolites in biological specimens is described. The analysis involves liquid-liquid extraction with benzene, pre-column derivatization with a highly fluorogenic reagent, 4-bromomethyl-6,7-methylenedioxycoumarin (BrMDC) and subsequent separation on a reversed-phase column. Loxoprofen, its pharmacologically active metabolite, trans-alcohol, and less active cis-alcohol were completely separated within 20 min with a mobile phase of 55% of aqueous acetonitrile containing acetic acid. Any endogenous substances do not interfere in the analysis of either plasma or urine samples. The quantitation limit was 0.01 micrograms/ml for human plasma and 0.05 micrograms/ml for urine. The method was applied to a pharmacokinetic study in healthy human subjects who had received 60 mg of loxoprofen sodium.  相似文献   

3.
Tropatepine is used to combat against extrapyramidal syndrome induced by neuroleptic drugs. A high-performance liquid chromatographic method was proposed for the simultaneous determination of tropatepine and its potential metabolites in biological fluids. After double extraction of compounds in hexane and back-extraction in hydrochloric acid, the chromatographic separation was performed on a reversed-phase column with an acetonitrile--perchlorate buffer mixture as mobile phase. Compounds were detected at 229 nm and the detection limit was about 15 ng/ml. The method was applied to bile and urine samples collected in rats, after a single high oral dose of 100 mg/kg of tropatepine hydrochloride. Gas chromatography-mass spectrometry was used for identification of the potential metabolites. Nortropatepine and tropatepine S-oxide were identified in this way, and it seemed that tropatepine was subjected to a large and intense metabolic process. The analytical procedure and the results of the metabolic investigation were applied to a preliminary pharmacokinetic study in patients undergoing long-term oral therapy with tropatepine.  相似文献   

4.
Mitragyna speciosa (Kratom in Thai), a Thai medical plant, is misused as herbal drug of abuse. Besides the most abundant alkaloids mitragynine (MG) and paynantheine (PAY), several other alkaloids were isolated from Kratom leaves, among them the third abundant alkaloid is speciogynine (SG), a diastereomer of MG. The aim of this present study was to identify the phase I and II metabolites of SG in rat urine after the administration of a rather high dose of the pure alkaloid and then to confirm these findings using human urine samples after Kratom use. The applied liquid chromatography coupled to low- and high-resolution mass spectrometry (LC-HRMS-MS) provided detailed information on the structure in the MS(n) mode particularly with high resolution. For the analysis of the human samples, the LC separation had to be improved markedly allowing the separation of SG and its metabolites from its diastereomer MG and its metabolites. In analogy to MG, besides SG, nine phase I and eight phase II metabolites could be identified in rat urine, but only three phase I and five phase II metabolites in human urine. These differences may be caused by the lower SG dose applied by the user of Kratom preparations. SG and its metabolites could be differentiated in the human samples from the diastereomeric MG and its metabolites comparing the different retention times determined after application of the single alkaloids to rats. In addition, some differences in MS(2) and/or MS(3) spectra of the corresponding diastereomers were observed.  相似文献   

5.
A simple and sensitive high-performance liquid chromatographic procedure to determine spironolactone and its three major metabolites in biological specimens is described. The assay involves sequential extraction on C18 and CN solid phases, and subsequent separation on a reversed-phase column. In plasma samples, spironolactone and its metabolites were completely separated within 8 min using an isocratic mobile phase, while in urine samples a methanol gradient was necessary to achieve a good separation within 14 min. Recoveries for all analytes were greater than 80% in plasma and 72% in urine. Linear responses were observed for all compounds in the range 6.25-400 ng/ml for plasma and 31.25-2000 ng/ml for urine. The plasma and urine methods were precise (coefficient of variation from 0.8 to 12.5%) and accurate (-12.1% to 7.4% of the nominal values) for all compounds. The assay proved to be suitable for the pharmacokinetic study of spironolactone in healthy human subjects.  相似文献   

6.
Pressurized CEC (pCEC) coupled with ESI‐QTOF‐MS using a sheathless interface was applied for metabolomics to develop an alternative analytical method for metabolic profiling of complex biofluid samples such as urine. The hyphenated system was investigated with mixed standards and pooled urine samples to evaluate its precision, repeatability, linearity, sensitivity, and selectivity. The applied voltage, mobile phase, and gradient elution were optimized and applied for the analysis of urinary metabolites. Multivariate data analysis was subsequently performed and used to distinguish lung cancer patients from healthy controls successfully. High separation efficiency has been achieved in pCEC due to the EOF. For metabolite identification, the pCEC‐MS separation mechnism was helpful for discriminating the fragment ions of glutamine conjugates from co‐eluted metabolites. Three glutamine conjugates, including phenylacetylglutamine, acylglutamine C8:1, and acylglutamine C6:1 were identified among 16 differential urinary metabolites of lung cancer. Receiver‐operating‐characteristic analysis of acylglutamine C8:1 resulted in an area‐under‐curve value of 0.882. Overall, this work suggests that this pCEC‐ESI‐QTOF‐MS method may provide a novel and useful platform for metabolomic studies due to its superior separation and identification.  相似文献   

7.
3'-Hydroxyacetanilide (AMAP) is a non-hepatotoxic regioisomer of acetaminophen that nonetheless does form reactive metabolites that are trapped as glutathione thioether adducts. These reactive intermediates are, 4-acetamido-o-benzoquinone, 2-acetamido-p-benzoquinone and N-acetyl-3-methoxy-p-benzoquinone. Thermospray liquid chromatography mass spectrometry (TSP LC-MS) was used to characterize products of reactions of these reactive compounds with cysteine or N-acetyl-cysteine. The TSP spectra of the mono- and bis-thioether adducts showed protonated molecular ions and characteristic fragmentation patterns. The chromatographic resolution together with the MS selectivity allowed for unequivocal identification of these conjugates in the urine of mice treated with AMAP.  相似文献   

8.
A highly sensitive and simple high-performance liquid chromatographic-tandem mass spectrometric (LC-MS-MS) assay is developed and validated for the quantification of sulforaphane and its metabolites in rat plasma. Sulforaphane (SFN) and its metabolites, sulforaphane glutathione (SFN-GSH) and sulforaphane N-acetyl cysteine (SFN-NAC) conjugates, are extracted from rat plasma by methanol-formic acid (100:0.1, v/v) and analyzed using a reversed-phase gradient elution on a Develosil 3 μm RP-Aqueous C(30) 140? column. A 15-min linear gradient with acetonitrile-water (5:95, v/v), containing 10 mM ammonium acetate and 0.2% formic acid, as mobile phase A, and acetonitrile-water (95:5, v/v), containing 10 mM ammonium acetate and 0.2% formic acid as mobile phase B, is used. Sulforaphane and its metabolites are well separated. Sulforaphene is used as the internal standard. The lower limits of quantification are 1 ng/mL for SFN and 10 ng/mL for both SFN-NAC and SFN-GSH. The calibration curves are linear over the concentration range of 25-20,000 ng/mL of plasma for each analyte. This novel LC-MS-MS method shows satisfactory accuracy and precision and is sufficiently sensitive for the performance of pharmacokinetic studies in rats.  相似文献   

9.
Chen H  Chen Y  Wang H  Du P  Han F  Zhang H 《Talanta》2005,67(5):142-991
A rapid and sensitive method is described for the determination of scopolamine and its metabolites in rat urine by combining liquid chromatography and tandem mass spectrometry (LC–MS/MS). Various extraction techniques (free fraction, acid hydrolyses and enzyme hydrolyses) and their comparison were carried out for investigation of the metabolism of scopolamine. After extraction procedure, the pretreated samples were injected into a reversed-phase C18 column with mobile phase of methanol/ ammonium acetate (2 mM, adjusted to pH 3.5 with formic acid) (70:30, v/v) and detected by an on-line MS/MS system. Identification and structural elucidation of the metabolites were performed by comparing their changes in molecular masses (ΔM), retention-times and full scan MSn spectra with those of the parent drug. The results revealed that at least 18 metabolites (norscopine, scopine, tropic acid, aponorscopolamine, aposcopolamine, norscopolamine, hydroxyscopolamine, hydroxyscopolamine N-oxide, p-hydroxy-m-methoxyscopolamine, trihydroxyscopolamine, dihydroxy-methoxyscopolamine, hydroxyl-dimethoxyscopolamine, glucuronide conjugates and sulfate conjugates of norscopolamine, hydroxyscopolamine and the parent drug) and the parent drug existed in urine after ingesting 55 mg/kg scopolamine to healthy rats. Hydroxyscopolamine, p-hydroxy-m-methoxyscopolamine and the parent drug were detected in rat urine for up 106 h after ingestion of scopolamine.  相似文献   

10.
Abstract

A fast and simple method was developed for the separation of unconjugated bilirubin and its mono- and di-glucuronide conjugates from bile by high-performance liquid chromatography (HPLC). Unconjugated bilirubin was separated on a reversed-phase column using acetonitrile-water (70:30 v/v) as the mobile phase, while the conjugates were separated on a μ-Bondapak-carbohydrate column employing acetonitrile-water (90:10 v/v) as the eluent. The application of this method was demonstrated by the analysis of the bile pigments in rat bile.  相似文献   

11.
The performance of a number of liquid--solid systems, consisting of mixtures of buffers (0.05 M) and methanol as mobile phase and methyl-silica as stationary phase, were investigated with respect to their use in the separation of 1,4-benzodiazepines by reversed-phase high-performance liquid chromatography with UV detection at 254 nm. Phase system selectivities and column efficiencies were determined. A nomogram is presented from which the chromatographic parameters can be calculated. A complete separation of nine benzodiazepines within 12 min has been achieved, using methyl-silica as the stationary phase and 50% methanol as the eluent. The results were applied to the development of a method for the determination of therapeutic levels of diazepam and its metabolites in human serum, urine and saliva. The first step in the analysis, the extraction of diazepam and its metabolites from serum and urine, was also investigated and good recoveries were achieved. A low detection limit (0.2 ng) and high precision were obtained. The concentrations of diazepam and its metabolites in human serum, urine and saliva were determined after both single and multiple oral doses of diazepam (and oxazepam).  相似文献   

12.
Abstract

An efficient separation of the isomeric thioether metabolites of styrene oxide was achieved under reversed-phase conditions. The column was eluted isocratically with 15% methanol in buffered solutions of phosphoric acid-tris-hydroxymethylaminomethane. The thioether conjugates were separated by class, and the order of elution was cysteine, cysteinylglycine, glutathione, and N-acetylcysteine. The effect of pH and buffer salt concentration on the HPLC separation was examined. Optimal conditions for a separation were either found at low pH (pH 3 or 4) or neutral pH, both at a high buffer salt concentration (75mM). The positional isomers and stereoisomers comprising each amino acid conjugate sample were separated into two peaks. The variations in k1 and α observed with changes in pH were interpreted as reflecting the degree of interaction of the ionizable groups in the amino acid residue and the hydrophobic portion of the molecule. This interaction was found to be strongly influenced by the relative stereochemistry of the benzylic carbon center, thus allowing the separation of diastereoisomeric thioethers.  相似文献   

13.
The simultaneous isolation and determination of mitoxantrone (Novantrone) and its two known metabolites (the mono- and dicarboxylic metabolites) were carried out using a high-performance liquid chromatographic (HPLC) system equipped with an automatic pre-column-switching system that permits drug analysis by direct injection of biological samples. Plasma or urine samples were injected directly on to an enrichment pre-column flushed with methanol-water (5:95, v/v) as the mobile phase. The maximum amount of endogenous water-soluble components was removed from biological samples within 9 min. Drugs specifically adsorbed on the pre-column were back-flushed on to an analytical column (Nucleosil C18, 250 X 4.6 mm I.D.) with 1.6 M ammonium formate buffer (pH 4.0) (2.5% formic acid) containing 20% acetonitrile. Detection was effected at 655 nm. Chromatographic analysis was performed within 12 min. The detection limit of the method was about 4 ng/ml for urine and 10 ng/ml for plasma samples. The precision ranged from 3 to 11% depending on the amount of compound studied. This technique was applied to the monitoring of mitoxantrone in plasma and to the quantification of the unchanged compound and its two metabolites in urine from patients receiving 14 mg/m2 of mitoxantrone by intravenous infusion for 10 min.  相似文献   

14.
Qualitative screening procedures have been developed for the rapid detection and identification of the metabolites of nerve agents in the urine samples and extracts using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The combination of negative electrospray ionization (ESI) using a C18 column and water-methanol mobile phase modified with ammonium formate provides a rapid screening procedure for nerve agent degradation products with limit of detection of 1 ng/mL in the precursor-ion analysis. Also, determination of the alkyl methylphosphonic acids was carried out by the SRM scan mode with the limit of detection of 0.1 ng/mL. These procedures will be applicable to the trace analysis of metabolites of nerve agents in human urine matrices in the Organisation for the Prohibition of Chemical Weapons (OPCW) proficiency test.  相似文献   

15.
This is a report about the identification of key metabolites of tectorigenin in rat urine using high-performance liquid chromatography-electrospray ionization ion trap tandem mass spectrometric method (HPLC-ESI-MS(n)). Six healthy rats were administered a single dose (80 mg/kg) of tectorigenin by oral gavage. Urine was sampled for 0-24 h and centrifuged at 12,000 rpm for 10 min to obtain the supernatants, then the supernatants were purified by solid-phase extraction with a C(18) cartridge. The chromatographic separation was carried out on a reversed-phase C(18) column with a gradient elution program whereas acetonitrile-0.1% formic acid water was used as mobile phase. Mass spectra were acquired in negative ionization mode and a data-dependant scan was used for the identification of the key metabolites of tectorigenin in the urine samples. As a result, four phase II metabolites and the parent drug tectorigenin were found and identified in rat urine for the first time.  相似文献   

16.
A simple and rapid high-performance liquid chromatographic-electrospray ionization (ESI) tandem mass spectrometric method has been developed for elucidation of the structures of the metabolites of anisodine in rat urine after administration of a single dose (20 mg). Different extraction techniques (free fraction, acid hydrolysis, and enzyme hydrolysis) were compared for investigation of the metabolism of anisodine. After extraction the pretreated samples were injected into a reversed-phase C18 column with 60:40 (v/v) methanol–0.01% triethylamine solution (2 mM, adjusted to pH 3.5 with formic acid) as mobile phase. Detection was by on-line MS-MS. Identification of the metabolites and elucidation of their structure were performed by comparing changes in molecular masses (ΔM), retention-times, and spectral patterns of product ions with those of the parent drug. At least twenty metabolites (norscopine, scopine, α-hydroxytropic acid, aponoranisodine, apoanisodine, noranisodine, anisodine N-oxide, hydroxyanisodine, hydroxyanisodine N-oxide, methoxyanisodine, hydroxymethoxyanisodine, trihydroxyanisodine, dihydroxymethoxyanisodine, hydroxydimethoxyanisodine, glucuronide conjugates, and sulfate conjugates of noranisodine, hydroxyanisodine and the parent drug) and the parent drug were found in the urine after ingestion of 20 mg anisodine by healthy rats. Anisodine N-oxide, hydroxyanisodine, and the parent drug were detected in rat urine for up 120 h after ingestion of the drug.  相似文献   

17.
A sensitive and selective high-performance liquid chromatographic method for determination of intact glipizide in human plasma or urine has been developed. The plasma and urine samples were acid-buffered, before tolbutamide was added as internal standard. The samples were extracted with benzene, and the organic layer was evaporated to dryness. The residue was dissolved in equilibrated mobile phase (acetonitrile-0.01 M phosphate buffer pH 3.5, 35:65), and an aliquot of 20 microliters was chromatographed on a Spherisorb ODS reversed-phase column. Quantitation was achieved by monitoring the ultraviolet absorbance at 275 nm. The response was linear (0-1000 ng/ml) and the detection limit was 5-10 ng/ml in plasma or urine. The within-assay variation was less than or equal to 10%. No interferences from metabolites or endogenous constituents were observed. The utility of the assay was demonstrated by determining glipizide in samples from a diabetic subject receiving a therapeutic dose of 5 mg of the drug.  相似文献   

18.
Isolation and characterization of metabolites of miloxacin, a new antimicrobial agent, were undertaken with rats. 14C-Miloxacin was orally administered to Sprague-Dawley rats at a dose of 50 mg/kg, and urine, bile and feces were collected. The metabolites extracted from the biological samples were isolated by column and thin-layer chromatographies. Characterization of the isolated metabolites was carried out by comparison with the authentic materials in various physicochemical analyses. Eight metabolites together with intact miloxacin were identified; containing the metabolites of N-demethoxy (M-1), catechol (M-3) and 6-methoxy (M-2 and M-4) types and their conjugates with glucuronic acid.  相似文献   

19.
Individual high-performance liquid chromatographic (HPLC) methods have been developed for the determination of two major metabolites of lonapalene in rat urine. The highly unstable and polar 1,4-diketo-2,3-dihydroxy metabolite (II) is extracted from urine by two extraction columns (phenyl followed by silica), further purified by means of HPLC with a fully end-capped C18 HPLC column and quantified by an ultraviolet detector at 280 nm. Ascorbic acid is used as an antioxidant during extraction and overnight injection of II. Urine samples for total II (free plus conjugated) determination are incubated with arylsulfatase and beta-glucuronadase prior to extraction. The 1,4-diketo metabolite (III) is extracted from urine with a C18 extraction column, further purified with a C18 HPLC column, and quantified by an ultraviolet detector at 260 nm. The detection limit for both metabolites is 100 ng/ml of urine (signal-to-noise = 2.5). The methods were used to analyze urine samples from a long-term toxicology study of lonapalene in rats and to determine the linearity of dose-concentration relationships for both metabolites.  相似文献   

20.
Ticlopidine, an antiplatelet drug, undergoes extensive oxidative metabolism to form S‐oxide, N‐oxide, hydroxylated and dealkylated metabolites. However, metabolism of ticlopidine via conjugation has not been thoroughly investigated. In this study, multiple data acquisition and processing tools were applied to the detection and characterization of ticlopidine conjugates in rat bile. Accurate full‐scan mass spectrometry (MS) and collision‐induced dissociation (CID) MS/MS data sets were recorded using isotope pattern‐dependent acquisition on an LTQ/Orbitrap system. In addition, mass spectral data from online H/D exchanging and high collision energy dissociation (HCD) were recorded. Data processes were carried out using extracted ion chromatography (EIC), mass defect filter (MDF) and isotope pattern filter (IPF). The total ion chromatogram displayed a few major conjugated metabolites and many endogenous components. Profiles from EIC and IPF processes exhibited multiple conjugates with no or minimal false positives. However, ticlopidine conjugates that were not predictable or lost a chorine atom were not found by EIC or IPF, respectively. MDF was able to detect almost all of ticlopidine conjugates although it led to a few more false positives. In addition to CID spectra, data from HCD, H/D exchanging experiments and isotope pattern simulation facilitated structural characterization of unknown conjugates. Consequently, 20 significant ticlopidine conjugates, including glucuronide, glutathione, cysteinylglycine, cysteine and N‐acetylcysteine conjugates, were identified in rat bile, a majority of which are associated with bioactivation and not previously reported. This study demonstrates the utility and limitation of various high‐resolution MS‐based data acquisition and processing techniques in detection and characterization of conjugated metabolites. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号