首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
将聚氧化乙烯(PEO)和二(三氟甲基磺酰)亚胺锂(LiTFSI)混合(固定EO/Li摩尔比为13)后, 采用溶液浇注法制备了一系列不同Li1.5Al0.5Ge1.5(PO4)3(LAGP)与PEO质量比的LAGP-PEO(LiTFSI)固体复合电解质体系. 结合电化学阻抗法、 表面形貌表征以及与惰性陶瓷填料(SiO2, Al2O3) 性能的对比分析, 探讨了LAGP在固体复合电解质中的作用机理以及锂离子的导电行为. 结果表明, 在以LAGP为主相的固体复合电解质中, PEO主要处于无定形态, 整个体系主要为PEO与LiTFSI的络合相、 LAGP与PEO(LiTFSI)相互作用形成的过渡相和LAGP晶相. 其中LAGP作为主要的导电基体不仅起到降低PEO结晶度、 改善两相导电界面的作用; 同时自身也可以作为离子传输的通道, 降低锂离子迁移的活化能, 从而使离子电导率得到提高. 当LAGP与PEO的质量比为6:4时, 固体复合电解质的成膜性能最好, 离子电导率最高, 在30 ℃时为2.57×10-5 S/cm, 接近LAGP的水平, 电化学稳定窗口超过5 V.  相似文献   

2.
Mesoporous molecular sieve LiAlSBA was prepared via an ion exchange process with mesoporous AlSBA directly, which has a regular 2D hexagonal structure with pore size about 7 nm. It was added into poly(ethylene oxide) (PEO) solid electrolyte as filler. The characteristics of the composite polymer electrolyte were determined by XRD, DSC, TGA, FTIR, PLM and electrochemical methods. Compared with bare PEO electrolyte, the adding of dispersed LiAlSBA powder improved the ionic conductivity of PEO polymer electrolyte more than three orders. The reason for it is that mesoporous LiAlSBA powder acts as crystal cores in PEO composite electrolyte and fines the crystallites, decreases the crystallinity, which provides much more continuous amorphous domain for Li+ moving easily in PEO electrolyte. Besides, lithium ions of the mesoporous molecular sieves can hop from one site to another along the surface of the mesoporous channels, this mechanism is absent in the case of common nano-ceramic fillers in PEO electrolyte.  相似文献   

3.
通过XRD ,DSC ,FT IR和SEM等方法对PEO LiClO4 ZSM5复合电解质进行了研究 ,结果表明ZSM 5可以有效地降低PEO LiClO4 ZSM5复合电解质中PEO的结晶度和玻璃化温度 ,从而提高其低温区域的离子电导率 .温度高于PEO的结晶熔融温度后 ,复合电解质离子电导率的提高则是由于在ZSM 5表面形成了有利于Li离子迁移的导电通道所引起的 .较高的离子电导率和较宽的电化学稳定窗口表明PEO LiClO4 ZSM5复合电解质在全固态锂离子二次电池领域具有良好的应用前景 .  相似文献   

4.
采用简单的溶液浇铸法制备出由双(三氟甲基磺酰)亚胺钠(NaTFSI)/聚氧乙烯(PEO)构筑的固态聚合物电解质(SPE),并针对其相转变、结晶性、热稳定性、电导率以及电化学稳定性等基础理化及电化学性质进行了系统表征。结果表明,NaTFSI/PEO([EO]/[Na+]=15)SPE具有相对高的电导率(σ ≈ 10-3 S·cm-1,80℃)、高的耐氧化能力(4.86 V vs Na+/Na)和热稳定性高达350℃。电池测试结果表明,该NaTFSI基SPE不仅对金属钠电极能够呈现出优异的界面稳定性,而且在Na|SPE|NaCu1/9Ni2/9Fe1/3Mn1/3O2电池中展现出良好的循环和倍率性能。  相似文献   

5.
We report the development of a solid polymer electrolyte film from hydrogen bonding layer-by-layer (LBL) assembly that outperforms previously reported LBL assembled films and approaches battery integration capability. Films were fabricated by alternating deposition of poly(ethylene oxide) (PEO) and poly(acrylic acid) (PAA) layers from aqueous solutions. Film quality benefits from increasing PEO molecular weight even into the 10(6) range due to the intrinsically low PEO/PAA cross-link density. Assembly is disrupted at pH near the PAA ionization onset, and a potential mechanism for modulating PEO:PAA ratio within assembled films by manipulating pH is discussed. Ionic conductivity of 5 x 10(-5) S/cm is achievable after short exposure to 100% relative humidity (RH) for plasticization. Adding free ions by exposing PEO/ PAA films to lithium salt solutions enhanced conductivity to greater than 10(-5) S/cm at only 52% RH and tentatively greater than 10(-4) S/cm at 100% RH. The excellent stability of PEO/PAA films even when exposed to 1.0 M salt solutions led to an exploration of LBL assembly with added electrolyte present in the adsorption step. Fortuitously, the modulation of PEO/PAA assembly by ionic strength is analogous to that of electrostatic LBL assembly and can be attributed to electrolyte interactions with PEO and PAA. Dry ionic conductivity was enhanced in films assembled in the presence of salt as compared to films that were merely exposed to salt after assembly, implying different morphologies. These results reveal clear directions for the evolution of these promising solid polymer electrolytes into elements appropriate for electrochemical power storage and generation applications.  相似文献   

6.
含锂沸石Li-FER提高PEO复合聚合物电解质电导率   总被引:3,自引:0,他引:3  
通过离子交换方法使锂部分取代了镁碱沸石(FER)孔道壁上羟基中的氢,制得含锂沸石Li-FER. 将这种沸石作为无机填料加入到PEO/LiClO4聚合物电解质中,可以使其室温电导率提高三个数量级以上. 电化学测量表明, 锂离子与PEO和含锂沸石中氧的相互作用提高了聚合物电解质中锂离子的迁移数. 另一方面, 采用XRD, DSC, PLM等方法研究了电解质的结晶状况.结果表明, Li-FER可以作为PEO链段结晶的成核剂,使PEO电解质的晶粒得到细化, 结晶度降低,为Li+的传输提供了更多的非晶区通道. 这是Li-FER的加入促使PEO聚合物电解质电导率提高的两个主要原因.  相似文献   

7.
In this study, photovoltaic (PV) properties of dye‐sensitized solar cells (DSSCs) incorporated with graphene oxide nanosheet‐polyaniline (GOS‐PANI) nanohybrid/poly(ethylene oxide) (PEO) blend gel electrolytes were investigated. Chemical structure and composition of GOS‐PANI nanohybrids were characterized by Raman spectroscopy and X‐ray photoelectron spectroscopy. The images of transmission electron microscopy revealed that PANI nanorods were anchored to the single‐layered GOS for the GOS‐PANI nanohybrids. Ionic conductivities of the GOS‐PANI/PEO–based gel electrolytes were measured using a conductivity meter. The electrochemical catalytic activities of the GOS‐PANI nanohybrids were determined through cyclic voltammetry. These GOS‐PANI nanohybrids were served as the extended electron transfer materials and catalyst for the electrochemical reduction of I3?. Due to the enhancement of the ionic conductivity and electrochemical catalytic activity of the gel electrolyte, better PV performance was observed for the DSSCs based on the GOS‐PANI containing electrolytes as compared to the pristine PEO electrolyte‐based DSSC sample. Moreover, PV performances of the GOS‐PANI/PEO–based DSSCs were closely related to the PANI content of GOS‐PANI nanohybrids. The highest photo‐energy conversion efficiency (5.63%) was obtained for an optimized GOS‐PANI/PEO (5:95, w/w) blend gel electrolyte‐based DSSC sample. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 321–332  相似文献   

8.
Composite polymer electrolytes based on poly(ethylene oxide)-polysiloxane/l-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide/organomontmorillonite(PEO-PDMS/1L/OMMT) were prepared and characterized.Addition of both an ionic liquid and OMMT to the polymer base of PEO-PDMS resulted in an increase in ionic conductivity.At room temperature,the ionic conductivity of sample PPB100-OMMT4 was 2.19×10~3 S/cm.The composite polymer electrolyte also exhibited high thermal and electrochemical stability and may potentially be applied in lithium batteries.  相似文献   

9.
聚氧乙烯(PEO)/粘土纳米复合材料.因为粘土的介入而具有更高的导电性、机械、热和界面稳定性,在电化学领域展现出了广泛的应用前景。本文对近十年来该材料的制备方法、插层结构、导电性、形态学以及流变学等研究进行了综述。  相似文献   

10.
合成了纳米氢氧化镁作为聚氧化乙烯(PEO)基聚合物电解质的增塑剂和阻燃剂,并对其进行X射线衍射(XRD)、透射电子显微镜(TEM)和热重(TG)分析研究.制得的氢氧化镁为片状六方晶体,尺寸在50-80nm之间,纳米氢氧化镁在340℃时开始热分解.对纳米氢氧化镁/PEO复合聚合物电解质的电化学研究结果显示:纳米氢氧化镁/PEO复合聚合物电解质的离子电导率随着添加纳米氢氧化镁的质量分数的增加先增大后减小,其在5%-10%之间时,复合聚合物电解质的离子电导率达到最大值.纳米氢氧化镁的添加使复合聚合物电解质的阳极氧化电位有一定程度的提高,纳米氢氧化镁具有改善PEO阳极抗氧化能力的作用.  相似文献   

11.
李雪  龚正良 《电化学》2020,26(3):338
锂硫电池由于具有高的理论比能量引起了广泛关注,然而传统液态锂硫电池由于多硫化物的“穿梭效应”以及安全问题而限制了其应用,全固态锂硫电池可显著提高电池安全性能并有望解决多硫化物的穿梭问题. 本文采用传统的溶液浇铸法制备了具有不同的[EO]/[Li+]的PEO-LiTFSI聚合物电解质,并将其应用于锂硫电池. 研究发现,虽然[EO]/[Li+] = 8的聚合物电解质具有更高的离子电导率,但是[EO]/[Li+] = 20的电解质与金属锂负极间的界面阻抗更低,界面稳定性更好. Li|PEO-LiTFSI([EO]/[Li+]=20)|Li对称电池在60 °C,电流密度为0.1 mA·cm-2时可稳定循环超过300 h,而Li|PEO-LiTFSI ([EO]/[Li+]=8)|Li对称电池循环75 h就出现了短路现象. 基于PEO-LiTFSI([EO]/[Li+]=20)电解质的锂硫电池首圈放电比容量为934 mAh·g-1,循环16圈后放电比容量为917 mAh·g-1以上. 而基于PEO-LiTFSI ([EO]/[Li+]=8)电解质的锂硫电池,由于与锂负极较低的界面稳定性不能够正常循环,首圈就出现了严重过充现象.  相似文献   

12.
Functionalized molecular sieve SBA-15 with trimethylchlorosilane was used as an inorganic filler in a poly(ethyleneoxide) (PEO) polymer matrix to synthesize a composite solid-state polymer electrolyte (CSPE) using LiClO4 as the doping salts, which is designated to be used for rechargeable lithium batteries. The methyl group-functionalized SBA-15 (fSBA-15) powder possesses more hydrophobic characters than SBA-15, which improves the miscibility between the fSBA-15 filler and the PEO matrix. The interaction between the fSBA-15 and PEO polymer matrix was investigated by scanning electron microscopy, X-ray diffraction, and differential scanning calorimetry. Linear sweep voltammetry and electrochemical impedance spectroscopy were employed to study the electrochemical stability windows, ionic conductivity, and interfacial stability of the CSPE. The temperature dependence of the change of the PEO polymer matrix in the CSPE from crystallization to amorphous phase was surveyed, for the first time, at different temperature by Fourier transform infrared emission spectroscopy. It has demonstrated that the addition of the fSBA-15 filler has improved significantly the electrochemical compatibility of the CSPE with a lithium metal electrode and enhanced effectively the ion conductivity of the CSPE. Dedicated to Professor Oleg Petrii on the occasion of his 70th birthday on August 24th, 2007.  相似文献   

13.
Al2O3掺杂的复合聚合物电解质室温电导研究   总被引:2,自引:1,他引:1  
1973年 Wright等[1] 首先报道了 PEO-Li+ 盐的固态聚电解质体系 ,我们从 90年代开始研究物质在聚合物电解质中的传输机理及固 -固界面动力学等问题 [2~ 4 ] .由于聚合物电解质易成膜 ,在制备高能密度全固态电池和光电化学器件等方面具有广泛的应用前景 .目前研究的聚电解质主要为通过加入金属盐而具有导电性的聚合物材料 .PEO具有良好的机械性能和化学稳定性 ,从而成为研究最为广泛的高分子材料 .金属盐溶于 PEO后 ,易形成晶态复合物 ,其电导率仅为 1 0 - 7~ 1 0 - 8S/cm,与应用中所要求的 1 0 - 3 S/cm相差甚远 .因此 ,如何提高 PE…  相似文献   

14.
Plasma electrolytic oxidation (PEO) of AZ91D magnesium alloy in biosafety electrolyte was studied. The prepared PEO coating and its stability in the simulated body fluid (SBF) were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectrometry (EDS), potentio-dynamic polarization, electrochemical impedance spectroscopy (EIS) and immersion test. The SEM results show that a kind of smooth, compact and well adhesive PEO coating is prepared in the proposed biosafety electrolyte. The electric analytical results show that the corrosion resistance of the PEO coating is excellent even in harsh environment. Immersion test shows that the PEO coating is stable enough in the SBF solution. The weight loss, the average corrosion rate and the pH variation of the PEO treated magnesium alloy are far lower than the untreated ones. From these highly positive results, the proposed PEO process is promising in the treatment of the surgical magnesium alloy materials.  相似文献   

15.
PEO/LiClO_4纳米SiO_2复合聚合物电解质的电化学研究   总被引:8,自引:0,他引:8  
将实验室制备的纳米二氧化硅和市售纳米二氧化硅粉末与PEO LiClO4复合 ,制得了复合PEO电解质 .它们的室温离子电导率可比未复合的PEO电解质提高 1~ 2个数量级 ,最高可以达到 1 2 4× 10 - 5S cm .离子电导率的提高有两方面的原因 :一是无机二氧化硅粉末的加入抑制了PEO的结晶 ,是二氧化硅粉末和聚合物电解质之间形成的界面对电导率的提高也有一定的作用 .在进一步加入PC EC(碳酸丙烯酯 碳酸乙烯酯 )混合增塑剂后制得的复合凝胶PEO电解质 ,可使室温离子电导率再提高 2个数量 ,达到 2× 10 - 3 S cm .用这种复合凝胶PEO电解质组装了Li|compositegelelectrolyte|Li半电池 ,并测量了该半电池的交流阻抗谱图随组装后保持时间的变化 ,实验观察到在保持时间为 144h以内钝化膜的交流阻抗迅速增大 ,但在随后的时间内逐渐趋于平稳 ,表明二氧化硅粉末的加入可以有效地抑制钝化膜的生长  相似文献   

16.
郑鹏轩  王向伟  王栋  于志伟 《高分子学报》2021,(1):94-101,I0005
聚氧化乙烯(PEO)(聚乙二醇(PEG))和丙烯酸树脂在聚合物基电解质中具有很好的应用,本文通过紫外光引发单/双官能度的聚乙二醇接枝丙烯酸树脂单体聚合构建了离子电导率高、易于封装,可避免电解质泄漏的准固态聚合物电解质.通过调控聚乙二醇二甲基丙烯酸酯(PEGDA)和甲氧基聚乙二醇单甲基丙烯酸酯(PEGMA)2种单体的比例以及锂盐溶液的含量,成功制备出具有高离电导率的准固态聚合物电解质.采用傅里叶变换红外光谱仪(FTIR),电化学工作站对PEGMA/PEGDA基聚合物电解质进行表征,研究各组分比例对电解质的电化学性能影响.当PEGMA/PEGDA单体比例为75/25,锂盐溶液的占比为75%时,形成的薄膜状态电解质表现出1.96×10^?3 S·cm^?1的高离子电导率,较原始配比提高了14倍.将制备的电解质应用于电致变色器件,在580个变色循环后,器件依然可以实现稳定快速的颜色切换,2种颜色变换时间均在3 s以内,本文中研究的聚醚接枝丙烯酸树酯基电解质材料在电致变色器件中有较好的应用前景.  相似文献   

17.
PEO-LiClO4-ZSM5复合聚合物电解质 I. 电化学研究   总被引:3,自引:1,他引:3  
首次以“择形”分子筛ZSM5为填料, 通过溶液浇铸法制得PEO-LiClO4-ZSM5全固态复合聚合物电解质(CPE)膜. 交流阻抗实验表明ZSM5的引入可以显著地提高CPE的离子电导率. 利用交流阻抗-稳态电流相结合的方法对CPE的锂离子迁移数进行了测定, 结果表明掺入ZSM5后锂离子迁移数明显升高. ZSM5的含量为10%时, CPE同时具有最高离子电导率1.4×10-5 S•cm-1(25 ℃)和最大锂离子迁移数0.353. PEO-LiClO4-ZSM5/Li电极界面稳定性实验表明PEO-LiClO4-ZSM5复合聚合物电解质在全固态锂离子电池领域具有良好的应用前景.  相似文献   

18.
Solid polymer electrolyte membranes were prepared by complexing tetrapropylammoniumiodide (Pr4N+I?) salt with polyethylene oxide (PEO) plasticized with ethylene carbonate (EC), and these were used in photoelectrochemical (PEC) solar cells fabricated with the configuration glass/FTO/TiO2/dye/electrolyte/Pt/FTO/glass. The PEO/Pr4N+I?+I2?=?9:1 ratio gave the best room temperature conductivity for the electrolyte. For this composition, the plasticizer EC was added to increase the conductivity, and a further conductivity enhancement of four orders of magnitude was observed. An abrupt increase in conductivity occurs around 60–70 wt% EC; the room temperature conductivity was 5.4?×?10?7 S cm?1 for 60 wt% EC and 4.9?×?10?5 S cm?1 for the 70 wt% EC. For solar cells with electrolytes containing PEO/Pr4N+I?+I2?=?9:1 and EC, IV curves and photocurrent action spectra were obtained. The photocurrent also increased with increasing amounts of EC, up to three orders of magnitude. However, the energy conversion efficiency of this cell was rather low.  相似文献   

19.
液态锂离子电池由于采用易泄露、易挥发、易燃烧的碳酸酯有机溶剂,在高温或极端条件下使用时,存在极大的安全隐患.使用固态电解质替代液态电解液,可以从根本上避免此类安全问题的发生,与此同时还可以大幅度提升固态锂电池的能量密度.固态电解质又分为无机固态电解质和聚合物固态电解质2大类.无机固态电解质能够在宽的温度范围内保持化学稳定性,并且电化学窗口较宽,机械强度更高,室温离子电导率较高,但脆性较大,柔韧性差,制备工艺复杂,成本较高.聚合物固态电解质,室温离子电导率偏低,难以满足室温锂离子电池的应用,但其加工成型容易,形状可变.比较而言,固态聚合物电解质,更适宜大规模生产,离产业化相对更近.固态聚合物电解质中研究较多的是聚醚基固态聚合物电解质(如聚环氧乙烷和聚环氧丙烷),但其缺点是室温离子电导率低,需要对其改性或进一步开发综合性能更加优异的其他固态聚合物电解质.聚碳酸酯基固态聚合物电解质由于其特殊的分子结构(含有强极性碳酸酯基团)以及高介电常数,可以有效减弱阴阳离子间的相互作用,提高载流子数量,从而提高离子电导率,因此被认为是一类非常有前途的固态聚合物电解质体系.基于此,本文重点综述了最近研究热点的聚碳酸酯基固态聚合物电解质,包括聚(三亚甲基碳酸酯)体系、聚(碳酸丙烯酯)体系、聚(碳酸乙烯酯)体系和聚(碳酸亚乙烯酯)体系等,并详细阐述了上述每种聚碳酸酯基固态聚合物电解质的制备、电化学性能、优缺点及改性手段,归纳出其离子配位-解配位过程和离子扩散机制,还对聚碳酸酯基固态聚合物电解质的未来发展方向和研究趋势望进行了预测和展望.  相似文献   

20.
Polymer electrolyte (PE) has been emerging as a promising alternative to liquid electrolytes due to the unique advantages such as excellent flexibility and processability, high chemical and thermal stability, and low risk of leakage and combustion, especially for lithium-ion batteries (LIBs). Even though abundant attempts focusing on polymer chemistries have been made, the inadequate capacity of lithium-ion transport via segmental motion still cannot provide satisfying room temperature ionic conductivity and lithium-ion transference number. In addition, safety concerns and short lifespan resulted from the brittle and incompatible interface between the electrode and polymer materials also hinder the commercialization of PEs-based LIBs. Hence, for the above performance defects and interface issues, this review provides an overview of polymer electrolytes from the conductivity improvement, polymer selection and mechanical strength enhancement for protrusion suppressing. The improvement of conductivity specifically includes structure modification of poly(ethylene oxide) (PEO) host and novel electrolyte matrix beyond PEO, while the section of interface regulation mainly involves dendrite-inhibited polymers, mechanical strengthening, and in situ polymerization. Finally, perspectives and challenges are pointed out in the development of polymer electrolytes with both excellent electrochemical performance and safety for LIBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号