首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The problem of interaction of gas-dust flows with solid surfaces arose in connection with the study of the motion of aircraft in a dusty atmosphere [1–2], the motion of a gas suspension in power generators, and in a number of other applications [3]. The presence of a disperse admixture may lead to a significant increase in the heat fluxes [4] and to erosion of the surface [5]. These phenomena are due to the joint influence of several factors — the change in the structure of the carrier-phase boundary layer due to the presence of the particles, collisions of the particles with the surface, roughness of the ablating surface, and so forth. This paper continues an investigation begun earlier [6–7] into the influence of particles on the structure of the dynamical and thermal two-phase boundary layer formed around a blunt body in a flow. The model of the dusty gas [8] has an incompressible carrier phase. The method of matched asymptotic expansions [9] is used to obtain the equations of the two-phase boundary layer. In the frame-work of the refined classification made by Stulov [6], it is shown that the form of the boundary layer equations is different in the presence and absence of inertial precipitation of the particles. The equations are solved numerically in the neighborhood of the stagnation point of the blunt body. The temperature and phase velocity distributions in the boundary layer, and also the friction coefficients and the heat transfer of the carrier phase are found for a wide range of the determining parameters. In the case of an admixture of low-inertia particles that are not precipitated on the body, it is shown that even when the mass concentration of the particles in the undisturbed flow is small their accumulation in the boundary layer can lead to a sharp increase in the thermal fluxes at the stagnation point.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 99–107, September–October, 1985.I thank V. P. Strulov for a discussion.  相似文献   

2.
A mathematical model of the hypersonic steady gas flow over the stagnation zone of an axisymmetric blunt body with given two-phase injection from the surface is proposed. The two-continuum model of a dusty gas [3] is used for describing the flow in the region of the wall. The problem is solved in the boundary layer and thin viscous shock layer approximations. On the basis of the numerical calculations the distribution of the parameters of the carrier and dispersed phases near the axis of symmetry is obtained. The similarity parameters determining the convective heat transfer are found. The stagnation point heat fluxes with and without particles are compared. The range of parameters on which particles can significantly reduce the heat transfer is determined.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.4, pp. 60–66, July–August, 1992.  相似文献   

3.
Moskowitz and Rosensweig [1] describe the drag of a magnetic liquid — a colloidal suspension of ferromagnetic single-domain particles in a liquid carrier — by a rotating magnetic field. Various hydrodynamic models have been proposed [2, 3] to describe the macroscopic behavior of magnetic suspensions. In the model constructed in [2] it was assumed that the intensity of magnetization is always directed along the field so that the body torque is zero. Therefore, this model cannot account for the phenomenon under consideration. We make a number of simplifying assumptions to discuss the steady laminar flow of an incompressible viscous magnetizable liquid with internal rotation of particles moving in an infinitely long cylindrical container in a rotating magnetic field. The physical mechanism setting the liquid in motion is discussed. The importance of unsymmetric stresses and the phenomenon of relaxation of magnetization are emphasized. The solution obtained below is also a solution of the problem of the rotation of a polarizable liquid in a rotating electric field according to the model in [3].Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 40–43, July–August, 1970.  相似文献   

4.
The effect of a particle on the basic flow is studied, and the equations of motion of the particle are formulated. The problem is solved in the Stokes approximation with an accuracy up to the cube of the ratio of the radius of the sphere to the distance from the center of the sphere to peculiarities in the basic flow. An analogous problem concerning the motion of a sphere in a nonuniform flow of an ideal liquid has been discussed in [1]. We note that the solution is known in the case of flow around two spheres by a uniform flow of a viscous incompressible liquid [2], and we also note the papers [3, 4] on the motion of a small particle in a cylindrical tube.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 71–74, July–August, 1976.  相似文献   

5.
Zonenko  S. I. 《Fluid Dynamics》1985,20(4):627-630
A study is made of the radial motion of a vapor envelope surrounding an isolated spherical particle in an unbounded mass of liquid. It is assumed that the liquid is viscous and incompressible and that the temperature is distributed uniformly in the solid particle. A model of a calorifically perfect gas is used for the vapor phase. The same assumptions are made as in Rayleigh's formulation for the problem of the dynamics of a single bubble: that the process is spherically symmetric and that the pressure P2 (t) in the vapor phase is homogeneous. The justification for making these assumptions in problems of the dynamics of gas, vapor, and vaporgas bubbles is discussed in [1–5]. In this paper, the collapse of the vapor layer and the boiling of the liquid on the surface of the heated particle are not considered.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 154–157, July–August, 1985.  相似文献   

6.
The one-dimensional motion of a viscous incompressible liquid in which particles are suspended is described by the mathematical model used in [1], Two examples are discussed: the precipitation of particles from the suspension, and a boiling layer. The results are presented in the form of graphs.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 102–108, November–December, 1973.  相似文献   

7.
The problem of designing the contour of an airfoil in a viscous (incompressible and compressible) flow with a separated turbulent boundary layer from a pressure distribution given on the separationless part of the contour is solved using the boundary layer theory together with the separated flow model proposed in [1]. Numerical calculations are carried out to demonstrate the possibilities of the method.Kazan'. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.3, pp. 83–91, May–June, 1994.  相似文献   

8.
Results are presented of a calculation of the flow around a sphere of a two-phase supersonic jet, discharging into a vacuum. Calculations were performed by the determination method with use of a difference grid constructed on the basis of characteristic ratios [1], The parameters of the unperturbed jet were determined with the two-velocity and two-temperature model of mutually penetrating flows of continuous media (gas and particles) [2, 3] by the network method [4]. In calculating the flow around the sphere, as in [5–7], it was assumed that the particles do not affect the gas flow in the shock layer. An analysis of the effect of particles on gasdynamic parameters in a shock layer was performed in [8].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 171–176, November–December, 1978.The authors are grateful to A. N. Nikulin for providing the program for calculation of flow about a blunt body by a uniform supersonic flow.  相似文献   

9.
The instability of a fluidized system in which the particles are uniformly distributed in space [1–3] leads to the development of local inhomogeneities in the internal structure, these taking the form of more or less stable formations of packets of particles [4]. In accordance with the existing ideas based on experimental data [5–8, 13], the particle concentration within a packet may vary in a wide range from very small values (10–2–10–3 [8]) for bubbles to the concentration of the unfluidized bed for bunches of particles in a nearly closely packed state. The paper considers the steady disturbed motion of the fluid and solid phases near an ascending or descending packet of particles in a developed fluidized bed. It is assumed that the motion of the solid phase corresponds to a creeping flow of viscous fluid, and the viscosity of the fluidizing agent is taken into account only in the terms that describe the interphase interaction. The velocity fields and pressure distributions of the phases inside and outside a packet are determined. If the particle concentration within a packet tends to zero, the solution describes the slow motion of a bubble in a fluidized bed. The results of the paper are compared with results obtained earlier for the model of ideal fluids [9] and Batchelor's model [10], in which the fluidized bed is treated in a simplified form as a viscous quasihomogeneous continuum.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 57–65, July–August, 1984.  相似文献   

10.
A study is made of plane laminar Couette flow, in which foreign particles are injected through the upper boundary. The effect of the particles on friction and heat transfer is analyzed on the basis of the equations of two-fluid theory. A two-phase boundary layer on a plate has been considered in [1, 2] with the effect of the particles on the gas flow field neglected. A solution has been obtained in [3] for a laminar boundary layer on a plate with allowance for the dynamic and thermal effects of the particles on the gas parameters. There are also solutions for the case of the impulsive motion of a plate in a two-phase medium [4–6], and local rotation of the particles is taken into account in [5, 6]. The simplest model accounting for the effect of the particles on friction and heat transfer for the general case, when the particles are not in equilibrium with the gas at the outer edge of the boundary layer, is Couette flow. This type of flow with particle injection and a fixed surface has been considered in [7] under the assumptions of constant gas viscosity and the simplest drag and heat-transfer law. A solution for an accelerated Couette flow without particle injection and with a wall has been obtained in [6]. In the present paper fairly general assumptions are used to obtain a numerical solution of the problem of two-phase Couette flow with particle injection, and simple formulas useful for estimating the effect of the particles on friction and heat transfer are also obtained.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 42–46, May–June, 1976.  相似文献   

11.
A two-phase medium with a carrier phase in the form of an incompressible electrically neutral fluid and a dispersed phase in the form of inertial charged particles flows past an electrically charged sphere. It is assumed that the electrohydrodynamic interaction parameter is insignificant and that the flow conditions correspond to potential unseparated flow of the carrier medium over the sphere. The motion of the dispersed phase is described by continuum dynamic equations incorporating the electric field, which is the sum of the external field created by the sphere and the field induced by the dispersed particles. The electric field is determined by means of the equations of electrodynamics, which must be considered together with the dynamic equations. In the case considered a large electrostatic potential is applied to the sphere. This prevents the particles striking the surface of the sphere and leads to the intersection of the particle trajectories. In order to solve this problem within the framework of the two-velocity continuum we introduce a surface of discontinuity of the parameters to replace the zone of multiphase flow. The location of the surface of discontinuity, the distribution of the velocity and density of the dispersed phase and the distribution of electrostatic potential are found as a result of solving a system of elliptic and hyperbolic equations in two regions separated by the surface of discontinuity. The results of numerically integrating the system of equations formulated are presented.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 90–95, March–April, 1987.  相似文献   

12.
A supersonic dusty gas flow over a blunt body is considered. The mathematical model of the two-phase gas–particle flow takes into account the inter-particle collisions and the two-way coupling effects. The carrier gas is treated as a continuum, the averaged flow field of which is described by the complete Navier–Stokes equations with additional source terms modeling the reverse action of the dispersed phase. The dispersed phase is treated as a discrete set of solid particles, and its behavior is described by a kinetic Boltzmann-type equation. Particles impinging on the body surface are assumed to bounce from it. Numerical analysis is carried out for the cross-wise flow over a cylinder. The method of computational simulation represents a combination of a CFD-method for the carrier gas and a Monte Carlo method for the “gas” of particles. The dependence of the fine flow structure of the continuous and dispersed phases upon the free stream particle volume fraction αp∞ and the particle radius rp is investigated, particularly in the shock layer and in the boundary layer at the body surface. The particle volume fraction αp∞ is varied from a negligibly low value to the value αp∞ = 3 × 105 at which inter-particle collisions and two-way coupling effects are simultaneously essential. Particular attention has been given to the particles of radii close to the critical value rp1, because in this range of particle size the behavior of the particles and their effect on the carrier gas flow are not yet completely understood. An estimate of the turbulent kinetic energy produced by the particles in the shock layer is obtained.  相似文献   

13.
14.
Interest in the hydrodynamics of a liquid with particle rotations and microdeformations has recently intensified [1–9] in connection with the technical applications of different artificially synthesized structured media. A model of a liquid with deformable microstructure was first proposed in [4] and was thermodynamically analyzed in [6], in which a model of a liquid was constructed by means of methods from the thermodynamics of irreversible processes. A model of a macro- and microincompressible liquid with particle rotations and deformations has been proposed [7, 8] based on constitutive equations from [6]. Below we will solve the sphere rotation problem in an infinite liquid given different boundary conditions on the rates of particle rotation and microdeformation within the context of the system of equations presented in [7]. The solution of an analogous problem for a micropolar liquid simulating a suspension with solid particles has been obtained [9] and the solution for a viscous liquid was found by Stokes in [10].Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnieheskoi Fiziki, No. 1, pp. 79–87, January–February, 1976.  相似文献   

15.
The theory of the radiation of sound by a sphere in an ideal medium is presented in detail in [1–3]. The emission of waves by a sphere oscillating to-and-fro in a viscous incompressible liquid is analyzed in [4, 5]. The present paper gives a precise solution to the problem of the radiation of sound by a sphere oscillating in a viscous medium.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 101–106, September–October, 1970.  相似文献   

16.
Steady high-Reynolds-number flow of a viscous incompressible fluid past a slender axisymmetric body is considered. The structure of the near wake and the boundary layer in the vicinity of the rear end of the body is studied. The relationship between the maximum relative body thickness and the rearend shape giving a local boundary layer — potential flow interaction zone in a small neighborhood of the rear end is found. The boundary value problem for this region is solved numerically.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 5, pp. 68–77, September–October, 1993.  相似文献   

17.
The boundary layer motion of a weak suspension is investigated with allowance for the effect on the particles not only of the Stokes force but also of the additional transverse force resulting from the transverse nonuniformity of the flow over the individual particle. As distinct from studies [1–3], in which the limiting values of the transverse force (Saffman force) were used [4], the velocity and density of the dispersed phase have been determined with allowance for the dependence of the Saffman force on the ratio of the Reynolds numbers calculated from the velocity of the flow over the individual particle and the transverse velocity gradient of the undisturbed flow, respectively [5, 6].Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 66–73, January–February, 1992.In conclusion the authors wishes to thank M. N. Kogan, N. K. Makashev, and A. Yu. Boris for useful discussions of the results.  相似文献   

18.
Similarity solutions of the equations of a laminar incompressible boundary layer, formed in a rotational external flow, are investigated. Such problems arise in the analysis of the flow in a boundary layer when there is an abrupt change in the boundary conditions (for example, in the case of a discrete inflation of the boundary layer, in hypersonic flow about blunt bodies, etc.). Various approaches to their solution have been proposed earlier in [1–4]. Solved below is the so-called inverse problem of boundary layer theory (see [3], p. 200), where the contour of the body that causes a given flow outside the boundary layer is unknown beforehand and is found during the course of solution of the problem in connection with the coupling of the longitudinal and transverse velocity components. The cases of a parabolic (ue ~ y2) and a linear (ue=a(x)+b(x)y) variation in the velocity of the external flow with distance along the transverse direction are considered in detail. The latter includes an investigation of the flow in the neighborhood of the critical point of a blunt body, taking account of the vorticity of the flow in the shock layer.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 78–83, March–April, 1971.  相似文献   

19.
The unsteady flow in the neighborhood of the stagnation line on a sphere traveling at supersonic speed through a plane layer of diatomic gas with elevated temperature and nonequilibrium excitation of the molecular vibrations is investigated. (The source of the inhomogeneity could be a gas discharge [1].) The problem is solved using the viscous shock layer model which makes it possible to take molecular transport processes into account and analyze the unsteady heat transfer. Such flows were previously calculated in [2] within the framework of the inviscid gas model.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i GazNo. 3, pp. 183–185, May–June, 1990.  相似文献   

20.
In the present study using the Newtonian approximation [1] we obtain an analytical solution to the problem of flow of a steady, uniform, hypersonic, nonviscous, radiating gas past a sphere. The three-dimensional radiative-loss approximation is used. A distribution is found for the gasdynamic parameters in the shock layer, the withdrawal of the shock wave and the radiant thermal flux to the surface of the sphere. The Newtonian approximation was used earlier in [2, 3] to analyze a gas flow with radiation near the critical line. In [2] the radiation field was considered in the differential approximation, with the optical absorption coefficient being assumed constant. In [3] the integrodifferential energy equation with account of radiation was solved numerically for a gray gas. In [4–7] the problem of the flow of a nonviscous, nonheat-conducting gas behind a shock wave with account of radiation was solved numerically. To calculate the radiation field in [4, 7] the three-dimensional radiative-loss approximation was used; in [5, 6] the self-absorption of the gas was taken into account. A comparison of the equations obtained in the present study for radiant flow from radiating air to a sphere with the numerical calculations [4–7] shows them to have satisfactory accuracy.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 44–49, November–December, 1972.In conclusion the author thanks G. A. Tirskii and É. A. Gershbein for discussion and valuable remarks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号