首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we consider a classical van der Pol equation with a general delayed feedback. Firstly, by analyzing the associated characteristic equation, we derive a set of parameter values where the Hopf bifurcation occurs. Secondly, in the case of the standard Hopf bifurcation, the stability of bifurcating periodic solutions and bifurcation direction are determined by applying the normal form theorem and the center manifold theorem. Finally, a generalized Hopf bifurcation corresponding to non-semisimple double imaginary eigenvalues (case of 1:1 resonance) is analyzed by using a normal form approach.  相似文献   

2.
We consider solutions bifurcating from a spatially homogeneous equilibrium under the assumption that the associated linearization possesses a continuous spectrum up to the imaginary axis, for all values of the bifurcation parameter, and that a pair of imaginary eigenvalues crosses the imaginary axis. For a reaction-diffusion-convection system we investigate the nonlinear stability of the trivial solution with respect to spatially localized perturbations, prove the occurrence of a Hopf bifurcation and the nonlinear stability of the bifurcating time-periodic solutions, again with respect to spatially localized perturbations.  相似文献   

3.
The standard approach to study symmetric Hopf bifurcation phenomenon is based on the usage of the equivariant singularity theory developed by M. Golubitsky et?al. In this paper, we present the equivariant degree theory based method which is complementary to the equivariant singularity approach. Our method allows systematic study of symmetric Hopf bifurcation problems in non-smooth/non-generic equivariant settings. The exposition is focused on a network of eight identical van der Pol oscillators with hysteresis memory, which are coupled in a cube-like configuration leading to S 4-equivariance. The hysteresis memory is the source of non-smoothness and of the presence of an infinite dimensional phase space without local linear structure. Symmetric properties and multiplicity of bifurcating branches of periodic solutions are discussed in the context showing a direct link between the physical properties and the equivariant topology underlying this problem.  相似文献   

4.
Hopf分岔的代数判据及其在车辆动力学中的应用   总被引:14,自引:0,他引:14  
张继业  杨翊仁  曾京 《力学学报》2000,32(5):596-605
利用Hurwitz行列式,给出平衡点失稳而发生Hopf分岔的代数判定准则和计算方法,这一方法将Hopf分岔点的求解转化为一个非线性方程的求解问题,从而克服了以前方法在计算Hopf分岔点时,对于参数的每一次变化通过求特征根并判定特征根的实部是否为零的庞大工作量。应用这一方法,我们进行了非线性车辆系统蛇行运动稳定性的研究,得到了轮对系统发生蛇行运动的临界速度的解析表达式。  相似文献   

5.
Spatiotemporal periodic patterns, including phase-locked oscillations, mirror-reflecting waves, standing waves, in-phase or anti-phase oscillations are investigated in a ring of bidirectionally coupled oscillators with neutral delay feedback. It is confirmed that neutral feedback makes Hopf bifurcation occur in a larger domain of parameters. We calculate the normal forms near Hopf bifurcation, D N equivariant Hopf bifurcation and double-Hopf bifurcation in this neutral equation by using the method of multiple scales. Theoretically, the appearance of the in-phase, anti-phase and phase-locked oscillations that we observed in the simulation about a ring of delay coupled Hindmarsh–Rose neurons with neutral feedback is explained.  相似文献   

6.
A simple delayed neural network model with three neurons is considered. By constructing suitable Lyapunov functions, we obtain sufficient delay-dependent criteria to ensure global asymptotical stability of the equilibrium of a tri-neuron network with single time delay. Local stability of the model is investigated by analyzing the associated characteristic equation. It is found that Hopf bifurcation occurs when the time delay varies and passes a sequence of critical values. The stability and direction of bifurcating periodic solution are determined by applying the normal form theory and the center manifold theorem. If the associated characteristic equation of linearized system evaluated at a critical point involves a repeated pair of pure imaginary eigenvalues, then the double Hopf bifurcation is also found to occur in this model. Our main attention will be paid to the double Hopf bifurcation associated with resonance. Some Numerical examples are finally given for justifying the theoretical results.  相似文献   

7.
In this paper, stability and local bifurcation behaviors for the nonlinear aeroelastic model of an airfoil with external store are investigated using both analytical and numerical methods. Three kinds of degenerated equilibrium points of bifurcation response equations are considered. They are characterized as (1) one pair of purely imaginary eigenvalues and two pairs of conjugate complex roots with negative real parts; (2) two pairs of purely imaginary eigenvalues in nonresonant case and one pair of conjugate complex roots with negative real parts; (3) three pairs of purely imaginary eigenvalues in nonresonant case. With the aid of Maple software and normal form theory, the stability regions of the initial equilibrium point and the explicit expressions of the critical bifurcation curves are obtained, which can lead to static bifurcation and Hopf bifurcation. Under certain conditions, 2-D tori motion may occur. The complex dynamical motions are considered in this paper. Finally, the numerical solutions achieved by the fourth-order Runge–Kutta method agree with the analytic results.  相似文献   

8.
This paper is concerned with the precise localization of Hopf bifurcations in various fluid flow problems. This is when a stationary solution loses stability and often becomes periodic in time. The difficulty is to determine the critical Reynolds number where a pair of eigenvalues of the Jacobian matrix crosses the imaginary axis. This requires the computation of the eigenvalues (or at least some of them) of a large matrix resulting from the discretization of the incompressible Navier–Stokes equations. We thus present a method allowing the computation of the smallest eigenvalues, from which we can extract the one with the smallest real part. From the imaginary part of the critical eigenvalue we can deduce the fundamental frequency of the time-periodic solution. These computations are then confirmed by direct simulation of the time-dependent Navier–Stokes equations. © 1997 John Wiley & Sons, Ltd.  相似文献   

9.
We analyze the interaction of three Hopf modes and show that locally a bifurcation gives rise to intermittency between three periodic solutions. This phenomenon can occur naturally in three-parameter families. Consider a vector fieldf with an equilibrium and suppose that the linearization off about this equilibrium has three rationally independent complex conjugate pairs of eigenvalues on the imaginary axis. As the parameters are varied, generically three branches of periodic solutions bifurcate from the steady-state solution. Using Birkhoff normal form, we can approximatef close to the bifurcation point by a vector field commuting with the symmetry group of the three-torus. The resulting system decouples into phase amplitude equations. The main part of the analysis concentrates on the amplitude equations in R3 that commute with an action ofZ 2+Z 2+Z 2. Under certain conditions, there exists an asymptotically stable heteroclinic cycle. A similar example of such a phenomenon can be found in recent work by Guckenheimer and Holmes. The heteroclinic cycle connects three fixed points in the amplitude equations that correspond to three periodic orbits of the vector field in Birkhoff normal form. We can considerf as being an arbitrarily small perturbation of such a vector field. For this perturbation, the heteroclinic cycle disappears, but an invariant region where it was is still stable. Thus, we show that nearby solutions will still cycle around among the three periodic orbits.  相似文献   

10.
We study the appearance and stability of spatiotemporal periodic patterns like phase-locked oscillations, mirror-reflecting waves, standing waves, in-phase or antiphase oscillations, and coexistence of multiple patterns, in a ring of bidirectionally delay coupled oscillators. Hopf bifurcation, Hopf–Hopf bifurcation, and the equivariant Hopf bifurcation are studied in the viewpoint of normal forms obtained by using the method of multiple scales which is a kind of perturbation technique, thus a clear bifurcation scenario is depicted. We find time delay significantly affects the dynamics and induces rich spatiotemporal patterns. With the help of the unfolding system near Hopf–Hopf bifurcation, it is confirmed in some regions two kinds of stable oscillations may coexist. These phenomena are shown for the delay coupled limit cycle oscillators as well as for the delay coupled chaotic Hindmarsh–Rose neurons.  相似文献   

11.
The normal forms for time-periodic nonlinear variational equations witharbitrary linear Jordan form undergoing bifurcations of highco-dimension are found. First, the equations are transformed via theLyapunov–Floquet (L–F) transformation into an equivalent form in whichthe linear matrix is constant with degenerate nonsemisimple lineareigenvalues while the nonlinear monomials have periodic coefficients. Byconsidering the resulting coupling of the bases of the near identitytransformation, the solvability condition for an arbitrary Jordan matrixis then derived. It is shown that time-independent and/or time-dependentnonlinear resonance terms remain in the normal form for various Jordanmatrices. Specifically, the normal forms for quadratic and cubicnonlinearities with the following linear Jordan forms are explicitlyderived: double zero eigenvalues (co-dimension two bifurcation), triplezero eigenvalues (co-dimension three bifurcation), and two repeatedpairs of purely imaginary eigenvalues (co-dimension two bifurcation). Acommutative system with cubic nonlinearities and a double inverted pendulum with a periodicfollower force are used as illustrative examples.  相似文献   

12.
Stability and bifurcation behaviors for a model of a flexible beam undergoing a large linear motion with a combination parametric resonance are studied by means of a combination of analytical and numerical methods. Three types of critical points for the bifurcation equations near the combination resonance in the presence of internal resonance are considered, which are characterized by a double zero and two negative eigenvalues, a double zero and a pair of purely imaginary eigenvalues, and two pairs of purely imaginary eigenvalues in nonresonant case, respectively. The stability regions of the initial equilibrium solution and the critical bifurcation curves are obtained in terms of the system parameters. Especially, for the third case, the explicit expressions of the critical bifurcation curves leading to incipient and secondary bifurcations are obtained with the aid of normal form theory. Bifurcations leading to Hopf bifurcations and 2-D tori and their stability conditions are also investigated. Some new dynamical behaviors are presented for this system. A time integration scheme is used to find the numerical solutions for these bifurcation cases, and numerical results agree with the analytic ones.  相似文献   

13.
The equivariant dynamics near relative equilibria to actions of noncompact, finite‐dimensional Lie groups G can be described by a skew‐product flow on a center manifold: with , with v in a slice transverse to the group action, and a(v) in the Lie algebra of G. We present a normal form theory near relative equilibria in this general case. For the specific case of the Euclidean groups the skew product takes the form with . We give a precise meaning to the intuitive idea of tip motion of a meandering spiral: it corresponds to the dynamics of . This clarifies the notion of meander radii and drift resonance in the plane . For illustration, we discuss the unbounded tip motions associated with a weak focus in v, on the verge of Hopf bifurcation, in the case of resonant Hopf and rotation frequencies of the spiral, and study resonant relative Hopf bifurcation. We also encounter random Brownian tip motions for trajectories which become homoclinic for . We conclude with some comments on the homoclinic tip shifts and drift resonance velocities in the Bogdanov‐Takens bifurcation, which turn out to be small beyond any finite order. (Accepted March 30, 1998)  相似文献   

14.
A variety of border collision bifurcations in a three-dimensional (3D) piecewise smooth chaotic electrical circuit are investigated. The existence and stability of the equilibrium points are analyzed. It is found that there are two kinds of non-smooth fold bifurcations. The existence of periodic orbits is also proved to show the occurrence of non-smooth Hopf bifurcations. As a composite of non-smooth fold and Hopf bifurcations, the multiple crossing bifurcation is studied by the generalized Jacobian matrix. Some interesting phenomena which cannot occur in smooth bifurcations are also considered.  相似文献   

15.
We provide the Hopf bifurcation theorem, which guarantees the existence of time periodic solution bifurcating from the stationary flow down an inclined plane under certain assumptions on the eigenvalues of the problem obtained by linearization around the stationary flow. Since we reduce the problem to the fixed domain, the inhomogeneous terms of reduced equations and reduced boundary conditions contain the highest derivatives. To deal with these we apply the Lyapunov–Schmidt decomposition directly.  相似文献   

16.
Hongwei Li 《Nonlinear dynamics》2012,70(2):1327-1334
Inspirited by Li and Jin (Nonlinear Dyn. 67:2857?C2864 2012), this paper investigates the Hopf bifurcation of a four-dimensional hyperchaotic system with only one equilibrium. A detailed set of conditions are derived, which guarantee the existence of the Hopf bifurcation. Furthermore, the standard normal form theory is applied to determine the direction and type of the Hopf bifurcation, and the approximate expressions of bifurcating periodic solutions and their periods. In addition, numerical simulations are used to justify theoretical results.  相似文献   

17.
The Hopfbifurcation for the Brusselator ordinary-differential-equation (ODE) model and the corresponding partial-differential-equation (PDE) model are investigated by using the Hopf bifurcation theorem. The stability of the Hopf bifurcation periodic solution is discussed by applying the normal form theory and the center manifold theorem. When parameters satisfy some conditions, the spatial homogenous equilibrium solution and the spatial homogenous periodic solution become unstable. Our results show that if parameters are properly chosen, Hopf bifurcation does not occur for the ODE system, but occurs for the PDE system.  相似文献   

18.
旋转振动圆柱绕流周期解和Floquet稳定性   总被引:5,自引:0,他引:5  
对低雷诺数旋转振动圆柱绕流问题运用低维Galerkin方法将N-S方程约化为一组非线性常微分方程组。运用打靶法数值求解了这组方程的周期解,并用Tloquet理论对周期解的稳定性进行了分析,确定了流动失稳的机制。  相似文献   

19.
The bifurcations and chaotic dynamics of parametrically and externally excited suspended cables are investigated in this paper. The equations of motion governing such systems contain quadratic and cubic nonlinearities, which may result in two-to-one and one-to-one internal resonances. The Galerkin procedure is introduced to simplify the governing equations of motion to ordinary differential equations with two-degree-of-freedom. The case of one-to-one internal resonance between the modes of suspended cables, primary resonant excitation, and principal parametric excitation of suspended cables is considered. Using the method of multiple scales, a parametrically and externally excited system is transformed to the averaged equations. A pseudo arclength scheme is used to trace the branches of the equilibrium solutions and an investigation of the eigenvalues of the Jacobian matrix is used to assess their stability. The equilibrium solutions experience pitchfork, saddle-node, and Hopf bifurcations. A detailed bifurcation analysis of the dynamic (periodic and chaotic) solutions of the averaged equations is presented. Five branches of dynamic solutions are found. Three of these branches that emerge from two Hopf bifurcations and the other two are isolated. The two Hopf bifurcation points, one is supercritical Hopf bifurcation point and another is primary Hopf bifurcation point. The limit cycles undergo symmetry-breaking, cyclic-fold, and period-doubling bifurcations, whereas the chaotic attractors undergo attractor-merging, boundary crises. Simultaneous occurrence of the limit cycle and chaotic attractors, homoclinic orbits, homoclinic explosions and hyperchaos are also observed.  相似文献   

20.
We consider a delay equation whose delay is perturbed by a small periodic fluctuation. In particular, it is assumed that the delay equation exhibits a Hopf bifurcation when its delay is unperturbed. The periodically perturbed system exhibits more delicate bifurcations than a Hopf bifurcation. We show that these bifurcations are well explained by the Bogdanov-Takens bifurcation when the ratio between the frequencies of the periodic solution of the unperturbed system (Hopf bifurcation) and the external periodic perturbation is 1:2. Our analysis is based on center manifold reduction theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号