共查询到20条相似文献,搜索用时 15 毫秒
1.
Bert Vreman Bernard J. Geurts N. G. Deen J. A. M. Kuipers J. G. M. Kuerten 《Flow, Turbulence and Combustion》2009,82(1):47-71
Large-eddy simulations (LES) of a vertical turbulent channel flow laden with a very large number of solid particles are performed.
The motivation for this research is to get insight into fundamental aspects of co-current turbulent gas-particle flows, as
encountered in riser reactors. The particle volume fraction equals about 1.3%, which is relatively high in the context of
modern LES of two-phase flows. The channel flow simulations are based on large-eddy approximations of the compressible Navier–Stokes
equations in a porous medium. The Euler–Lagrangian method is adopted, which means that for each individual particle an equation
of motion is solved. The method incorporates four-way coupling, i.e., both the particle-fluid and particle–particle interactions
are taken into account. The results are compared to single-phase channel flow in order to investigate the effect of the particles
on turbulent statistics. The present results show that due to particle–fluid interactions the mean fluid profile is flattened
and the boundary layer is thinner. Compared to single-phase turbulent flow, the streamwise turbulence intensity of the gas
phase is increased, while the normal and spanwise turbulence intensities are reduced. This finding is generally consistent
with existing experimental data. The four-way coupled simulations are also compared with two-way coupled simulations, in which
the inelastic collisions between particles are neglected. The latter comparison clearly demonstrates that the collisions have
a large influence on the main statistics of both phases. In addition, the four-way coupled simulations contain stronger coherent
particle structures. It is thus essential to include the particle–particle interactions in numerical simulations of two-phase
flow with volume fractions around one percent. 相似文献
2.
Large-eddy simulations of flow past a two-dimensional (2D) block were performed to evaluate four subgrid-scale (SGS) models: (i) the traditional Smagorinsky model, (ii) the Lagrangian dynamic model, (iii) the Lagrangian scale-dependent dynamic model, and (iv) the modulated gradient model. An immersed boundary method was employed to simulate the 2D block boundaries on a uniform Cartesian grid. The sensitivity of the simulation results to grid refinement was investigated by using four different grid resolutions. The velocity streamlines and the vertical profiles of the mean velocities and variances were compared with experimental results. The modulated gradient model shows the best overall agreement with the experimental results among the four SGS models. In particular, the flow recirculation, the reattachment position and the vertical profiles are accurately reproduced with a relative coarse grid resolution of (Nx × Ny × Nz=) 160 × 40 × 160 (nx × nz = 13 × 16 covering the block). Besides the modulated gradient model, the Lagrangian scale-dependent dynamic model is also able to give reasonable prediction of the flow statistics with some discrepancies compared with the experimental results. Relatively poor performance by the Lagrangian dynamic model and the Smagorinsky model is observed, with simulated recirculating patterns that differ from the measured ones. Analysis of the turbulence kinetic energy (TKE) budget in this flow shows evidence of a strong production of TKE in the shear layer that forms as the flow is deflected around the block. 相似文献
3.
Symmetries have an important role in turbulence. To some extent, they contain the physics of the equations (conservation laws,
etc.), and it is essential that turbulence models respect them. However, as observed by Oberlack (Annual Research Briefs.
Stanford University, Stanford 1997) and next by Razafindralandy and Hamdouni (Direct and Large-Eddy Simulation 6: Proceedings
of the 6th International ERCOFTAC Workshop on Direct and Large-Eddy Simulation. Springer, Heidelberg, 2006) in the case of
an isothermal fluid, only few subgrid stress tensor models preserve the symmetries of the Navier–Stokes equations. In this
communication, we present the symmetries of the equations of a non-isothermal fluid flow and analyze some common subgrid stress
tensor and flux models under the point of view of these symmetries.
相似文献
4.
This study revealed the three-dimensional instantaneous topologies of the large-scale turbulence structures in the separated flow on the suction surface of wind turbine’s blade during stall delay. These structures are the major contributors to the first two POD (proper orthogonal decomposition) modes. The two kinds of instantaneous flow structures as major contributors to the first POD mode are: (1) extended regions of downwash flow with an upstream upward flow beside it and a compact vortex pair closer to the blade’s leading edge; (2) a large-scale clockwise vortex with strong induced flows. The two kinds of flow structures contributing significantly to the second POD mode are: (1) large counter-rotating vortices inducing strong upward velocities and a series of small vortices; (2) strong downwash flow coming from the leading-edge shear layer with a large and strong vortex on the left side and small vortices upstream. The statistical impacts of these large-scale and energetic structures on the turbulence have also been studied. It was observed that when these turbulence structures were removed from the flow, the peak values of some statistics were significantly reduced. 相似文献
5.
An implicit two-equation turbulence solver, KEM. in generalized co-ordinates, is used in conjunction with the three-dimensional incompressible Navier–Stokes solver, INS3D, to calculate the internal flow in a channel and a channel with a sudden 2:3 expansion. A new and consistent boundary procedure for a low Reynolds number form of the κ-ε turbulence model is chosen to integrate the equations up to the wall. The high Reynolds number form of the equations is integrated using wall functions. The latter approach yields a faster convergence to the steady-state solution than the former. For the case of channel flow, both the wall-function and wall-boundary-condition approaches yield results in good agreement with the experimental data. The back-step (sudden expansion) flow is calculated using the wall-function approach. The predictions are in reasonable agreement with the experimental data. 相似文献
6.
Ibrahim E. Abdalla Malcolm J. Cook Simon J. Rees Zhiyin Yang 《International Journal of Computational Fluid Dynamics》2013,27(5-6):231-245
Rising buoyant plumes from a point heat source in a naturally ventilated enclosure have been investigated using large-eddy simulation (LES). The aim of the work is to assess the performance and the accuracy of LES for modelling buoyancy-driven displacement ventilation of an enclosure and to shed more light on the transitional behaviour of the plume and the coherent structures involved. The Smagorinsky sub-grid scale model is used for the unresolved small-scale turbulence. The Rayleigh number, Ra is chosen to be in the range where spatial transition from laminar to turbulent flow takes place (Ra = 1.5 × 109). The plume properties (source strength and rate of spread) as well as the ventilation properties (stratification height and temperature of stratified layer) estimated using the theory of Linden et al. are found to agree reasonably well with the LES results. The variation of the plume width with height indicates a linear variation of the entrainment coefficient rather than a constant value used by Linden et al. for a fully turbulent thermal plume. Flow visualisation revealed the nature of the large-scale coherent structures involved in the transition to turbulence in the plume. The most excited modes observed in the velocity, pressure and temperature fields spectra correspond to Strouhal number in the range 0.3 ≤ St ≤ 0.55 which is in agreement with those observed by Zhou et al. for a turbulent forced plume. Excited modes less than thisvalue (St = 0.2) were observed and may be due to low-frequency motions felt throughout the flow. 相似文献
7.
Bing-Chen Wang Jing Yin Eugene Yee Donald J. Bergstrom 《International Journal of Heat and Fluid Flow》2007,28(6):1227-1243
In this paper, a general family of explicit algebraic tensor diffusivity functions based on the resolved temperature gradient vector and strain rate tensor is studied and applied to the construction of new constitutive relations for modelling the subgrid-scale (SGS) heat flux (HF). Based on Noll’s formulation, dynamic linear and nonlinear tensor diffusivity models are proposed for large-eddy simulation of thermal convection. The constitutive relations for these two proposed models are complete and irreducible. These two new models include several existing dynamic SGS HF models as special cases. It is shown that in contrast to the conventional modelling approach, the proposed models embody more degrees of freedom, permit non-alignment between the SGS HF and resolved temperature gradient vectors, reflect near-wall flow physics at the subgrid scale, and therefore, allow for a more realistic geometrical representation of the SGS heat flux for large-eddy simulation of thermal convection. Numerical simulations have been performed using a benchmark test case of a combined forced and natural convective flow in a vertical channel with a Reynolds number of and a Grashof number of Gr = 9.6 × 105. The results obtained using the two proposed SGS HF models are compared with reported direct numerical simulation (DNS) data as well as predictions obtained using several conventional dynamic SGS HF models. 相似文献
8.
A diagnostic tool for jet noise using a line-source approach and implicit large-eddy simulation data
In this work, we propose a cost-effective approach allowing one to evaluate the acoustic field generated by a turbulent jet. A turbulence-resolving simulation of an incompressible turbulent round jet is performed for a Reynolds number equal to thanks to the massively parallel high-order flow solver Incompact3d. Then a formulation of Lighthill's solution is derived, using an azimuthal Fourier series expansion and a compactness assumption in the radial direction. The formulation then reduces to a line source theory, which is cost-effective to implement and evaluate. The accuracy of the radial compactness assumption, however, depends on the Strouhal number, the Mach number, the observation elevation angle, and the radial extent of the source. Preliminary results are showing that the proposed method approaches the experimental overall sound pressure level by less than 4 dB for aft emission angles below 50°. 相似文献
9.
V. Kumar B. Frohnapfel J. Jovanović M. Breuer W. Zuo I. Hadzić R. Lechner 《Flow, Turbulence and Combustion》2009,83(1):81-103
Numerical predictions with a differential Reynolds stress closure, which in its original formulation explicitly takes into
account possible states of turbulence on the anisotropy-invariant map, are presented. Thus the influence of anisotropy of
turbulence on the modeled terms in the governing equations for the Reynolds stresses is accounted for directly. The anisotropy
invariant Reynolds stress model (AIRSM) is implemented and validated in different finite-volume codes. The standard wall-function
approach is employed as initial step in order to predict simple and complex wall-bounded flows undergoing large separation.
Despite the use of simple wall functions, the model performed satisfactory in predicting these flows. The predictions of the
AIRSM were also compared with existing Reynolds stress models and it was found that the present model results in improved
convergence compared with other models. Numerical issues involved in the implementation and application of the model are also
addressed. 相似文献
10.
A mapping function between the Reynolds-averaged Navier-Stokes mean flow variables and transition intermittency factor is constructed by fully connected artificial neural network (ANN), which replaces the governing equation of the intermittency factor in transition-predictive Spalart-Allmaras (SA)- model. By taking SA- model as the benchmark, the present ANN model is trained at two airfoils with various angles of attack, Mach numbers and Reynolds numbers, and tested with unseen airfoils in different flow states. The a posteriori tests manifest that the mean pressure coefficient, skin friction coefficient, size of laminar separation bubble, mean streamwise velocity, Reynolds shear stress and lift/drag/moment coefficient from the present two-way coupling ANN model almost coincide with those from the benchmark SA- model. Furthermore, the ANN model proves to exhibit a higher calculation efficiency and better convergence quality than traditional SA- model. 相似文献
11.
The flow past an interface piercing circular cylinder at the Reynolds number Re=2.7×104 and the Froude numbers Fr=0.2 and 0.8 is investigated using large-eddy simulation. A Lagrangian dynamic subgrid-scale model and a level set based sharp interface method are used for the spatially filtered turbulence closure and the air-water interface treatment, respectively. The mean interface elevation and the rms of interface fluctuations from the simulation are in excellent agreement with the available experimental data. The organized periodic vortex shedding observed in the deep flow is attenuated and replaced by small-scale vortices at the interface. The streamwise vorticity and the outward transverse velocity generated near the edge of the separated region, which enforces the separated shear layers to deviate from each other and restrains their interaction, are primarily responsible for the devitalization of the periodic vortex shedding at the interface. The lateral gradient of the difference between the vertical and transverse Reynolds normal stresses, increasing with the Froude number, is the main source of the streamwise vorticity and the outward transverse velocity at the interface. 相似文献
12.
Bing-Chen Wang 《Fluid Dynamics Research》2008,40(2):123-154
In this paper, the geometrical properties of the resolved vorticity vector derived from large-eddy simulation are investigated using a statistical method. Numerical tests have been performed based on a turbulent Couette channel flow using three different dynamic linear and nonlinear subgrid-scale stress models. The geometrical properties of have a significant impact on various physical quantities and processes of the flow. To demonstrate, we examined helicity and helical structure, the attitude of with respect to the eigenframes of the resolved strain rate tensor and negative subgrid-scale stress tensor -τij, enstrophy generation, and local vortex stretching and compression. It is observed that the presence of the wall has a strong anisotropic influence on the alignment patterns between and the eigenvectors of , and between and the resolved vortex stretching vector. Some interesting wall-limiting geometrical alignment patterns and probability density distributions in the form of Dirac delta functions associated with these alignment patterns are reported. To quantify the subgrid-scale modelling effects, the attitude of with respect to the eigenframe of -τij is studied, and the geometrical alignment between and the Euler axis is also investigated. The Euler axis and angle for describing the relative rotation between the eigenframes of -τij and are natural invariants of the rotation matrix, and are found to be effective for characterizing a subgrid-scale stress model and for quantifying the associated subgrid-scale modelling effects on the geometrical properties of . 相似文献
13.
The accuracy of large-eddy simulation (LES) of a turbulent premixed Bunsen flame is investigated in this paper. To distinguish
between discretization and modeling errors, multiple LES, using different grid sizes h but the same filterwidth Δ, are compared with the direct numerical simulation (DNS). In addition, LES using various values
of Δ but the same ratio Δ/h are compared. The chemistry in the LES and DNS is parametrized with the standard steady premixed flamelet for stochiometric
methane-air combustion. The subgrid terms are closed with an eddy-viscosity or eddy-diffusivity approach, with an exception
of the dominant subgrid term, which is the subgrid part of the chemical source term. The latter subgrid contribution is modeled
by a similarity model based upon 2Δ, which is found to be superior to such a model based upon Δ. Using the 2Δ similarity model
for the subgrid chemistry the LES produces good results, certainly in view of the fact that the LES is completely wrong if
the subgrid chemistry model is omitted. The grid refinements of the LES show that the results for Δ = h do depend on the numerical scheme, much more than for h = Δ/2 and h = Δ/4. Nevertheless, modeling errors and discretization error may partially cancel each other; occasionally the Δ = h results were more accurate than the h ≤ Δ results. Finally, for this flame LES results obtained with the present similarity model are shown to be slightly better
than those obtained with standard β-pdf closure for the subgrid chemistry. 相似文献
15.
Jan Ramboer 《International Journal of Computational Fluid Dynamics》2013,27(3):221-233
In the present paper, an implicit time accurate approach combined with multigrid, preconditioning and residual smoothing is used for the large-eddy simulation (LES) of low Mach number flow. In general, due to the restriction imposed on the time step by the physics of the flow, the advantage of an implicit method over an explicit one for LES is not obvious. It is shown that for the test cases considered in this paper, the present approach allows an efficiency gain of a factor 4–7 compared to the use of a purely explicit approach. The efficiency varies according to the test case, grid clustering, physical time step and requested residual drop. Numerical difficulties are catalogued and mitigatory procedures are introduced. Several problems with available experimental and DNS data are employed to verify the efficiency of the method. 相似文献
16.
I. Recktenwald N. Alkishriwi W. Schrder 《European Journal of Mechanics - B/Fluids》2009,28(5):677-688
The flow field of a channel rotating about the streamwise axis is analyzed experimentally and numerically. The current investigations were carried out at a bulk velocity based Reynolds number of Rem = 2850 and a friction velocity based Reynolds number of Reτ = 180, respectively. Particle-image velocimetry (PIV) measurements are compared with large-eddy simulation data to show earlier direct numerical simulation findings to generate too large a reverse flow region in the center region of the spanwise flow. The development of the mean spanwise velocity distribution and the influence of the rotation on the turbulent properties, i.e., the Reynolds stresses and the two-point correlations of the flow, are confirmed in both investigations. The rotation primarily influences those components of the Reynolds shear stresses, which contain the spanwise velocity component. The size of the correlation areas and thus the length scales of the flow generally grow in all three coordinate directions leading to longer structures. Furthermore, experimental results of the same channel flow at a significantly lower bulk Reynolds number of Rem, l = 665, i.e., a laminar flow in a non-rotating channel, are introduced. The experiments show the low Reynolds number flow to become turbulent under rotation and to develop the same characteristics as the high Reynolds number flow. 相似文献
17.
18.
采用标准k-ε模型、RNG(Renormalization Group)k-ε模型、Realizable k-ε模型和Reynolds应力方程模型 RSM(Reynolds Stress Model) 对100 mm口径6种结构的内锥流量计内流场进行了数值模拟.在等效直径比β值为0.65的三种结构内锥流量计流出系数的仿真计算中,四种湍流模型计算结果与物理实验结果误差的平均值分别为4.19%,2.84%,2.88%和-0.822%;对β值为0.85的情况,各模型计算误差的平均值分别为11.8%,9.62%,9.30%和4.76%.研究结果表明,RSM模型在6种结构内锥流量计流出系数的预测中,计算精度较高,表现出了较好的性能,优于三种k-ε涡粘模型,更适于内锥流量计流场数值模拟与流出系数的预测. 相似文献
19.
Mehmet Onur Cetin Seong Ryong Koh Matthias Meinke Wolfgang Schröder 《Comptes Rendus Mecanique》2018,346(10):932-947
A hybrid computational fluid dynamics (CFD) and computational aeroacoustics (CAA) method is used to compute the acoustic field of turbulent hot jets at a Reynolds number and a Mach number . The flow field computations are performed by highly resolved large-eddy simulations (LES), from which sound source terms are extracted to compute the acoustic field by solving the acoustic perturbation equations (APE). Two jets are considered to analyze the impact of exit conditions on the resulting jet sound field. First, a jet emanating from a fully resolved non-generic nozzle is simulated by solving the discrete conservation equations. This computation of the jet flow is denoted free-exit-flow (FEF) formulation. For the second computation, the nozzle geometry is not included in the computational domain. Time averaged exit conditions, i.e. velocity and density profiles of the first formulation, plus a jet forcing in form of vortex rings are imposed at the inlet of the second jet configuration. This formulation is denoted imposed-exit-flow (IEF) formulation. The free-exit-flow case shows up to 50% higher turbulent kinetic energy than the imposed-exit-flow case in the jet near field, which drastically impacts noise generation. The FEF and IEF configurations reveal quite a different qualitative behavior of the sound spectra, especially in the sideline direction where the entropy source term dominates sound generation. This difference occurs since the noise sources generated by density and pressure fluctuations are not perfectly modeled by the vortex ring forcing method in the IEF solution. However, the total overall sound pressure level shows the same qualitative behavior for the FEF and IEF formulations. Towards the downstream direction, the sound spectra of the FEF and IEF solutions converge. 相似文献
20.
L. Eça M. Hoekstra A. Hay D. Pelletier 《International Journal of Computational Fluid Dynamics》2013,27(3-4):175-188
This paper presents a manufactured solution (MS), resembling a two-dimensional, steady, wall-bounded, incompressible, turbulent flow for RANS codes verification. The specified flow field satisfies mass conservation, but requires additional source terms in the momentum equations. To also allow verification of the correct implementation of the turbulence models transport equations, the proposed MS exhibits most features of a true near-wall turbulent flow. The model is suited for testing six eddy-viscosity turbulence models: the one-equation models of Spalart and Allmaras and Menter; the standard two-equation k–ε model and the low-Reynolds version proposed by Chien; the TNT and BSL versions of the k–ω model. 相似文献