首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
染料掺杂聚合物光纤的荧光及其光谱下转换性质   总被引:1,自引:1,他引:0  
为了拓展染料掺杂聚合物光纤的应用范围,利用甲基丙烯酸甲酯(MMA)单体合成了掺有Coumarin540和Rhodamine 6G两种激光染料的聚甲基丙烯酸甲酯(PMMA)聚合物玻璃棒,并将其拉制成直径约1 000μm的聚合物光纤。以市售LED灯为光源,在侧向照明和前端照明两种条件下分别研究了染料掺杂的聚合物光纤中染料的荧光、荧光传输损耗以及光纤的光谱下转换等性质。两种染料的Stokes波长红移幅度分别达到70 nm和50 nm。在掺杂浓度分别为0.01 mg/g和0.04 mg/g时,侧向照明条件下测得两种光纤分别对520nm和577 nm的荧光的传输损耗为0.336 cm-1和0.343 cm-1。在前端照明条件下,在光纤输出端获得了较高下转换效率的光谱输出,其转换效率与染料掺杂浓度和光纤长度有关。这种染料掺杂的聚合物光纤有可能与石英玻璃光纤耦合,对其所传输的光进行光谱下转换的光频调控以更好地满足不同的应用需求。  相似文献   

2.
快速有效地获得多级联光纤光栅法布里-珀罗(F-P)腔的光谱特性,是优化设计基于上述结构建立的级联多波长激光器、放大器等各种光器件以及复杂分布式传感网络的重要基础和保障.将V-I传输矩阵法用于光纤光栅F-P腔反射光谱特性的分析,并建立了V-I传输矩阵模型.采用该模型对三种不同结构的光纤光栅F-P腔在不同参数下的光谱特性进行分析,并与传统多层膜法的分析结果相比较,表明V-I传输矩阵法能够在保证分析精度的前提下大大节省运算时间.实验结果表明,V-I传输矩阵法对光纤光栅F-P腔谱特性的分析结果比耦合模法更准确.  相似文献   

3.
瓣状光纤(SCF)由高折射率均匀芯层和高低折射率区域交替的皮层组成, 可有效地实现大纤芯单模运行。提出了采用复合纺丝法一步制备瓣状光纤。采用聚碳酸酯(PC)和聚甲基丙烯酸甲酯(PMMA)成功地制备截面符合设计要求的聚合物瓣状光纤。所制光纤的纤芯直径为40 μm。并用白光作为光源, 考察了所制光纤在500~1000 nm波段范围的出射光谱。从出射光谱可以看出, 所制光纤在730~830 nm波段范围内透射率比较高。通过截断法对所得光纤在500~1000 nm波段范围的传输损耗进行测试, 结果表明所制光纤的传输损耗比较大, 最大为30 dB/m。采用532 nm绿色激光作为光源, 通过CCD采集60 cm所得光纤的光斑。  相似文献   

4.
 设计了一种聚甲基丙烯酸甲酯(PMMA)基的单偏振单模(SPSM)微结构聚合物光纤(MPOF)。利用全矢量有限元法和光束传播法相结合分析了这种光纤的偏振特性和约束损耗。通过优化光纤结构参数,发现在0.51 μm~0.62 μm的可见光波长范围,由于基模两个正交偏振模的截止波长不同,这种微结构聚合物光纤只能传输基模中的一个偏振模,从而实现单偏振单模运转。该11圈圆空气孔六角排列光纤结构的传导偏振模在0.57 μm波长处约束损耗仅为1.13 dB/m,这种低损耗的单偏振单模微结构聚合物光纤可有效消除传统保偏光纤固有的偏振串扰和偏振模色散。  相似文献   

5.
张艳  文侨  张彬 《物理学报》2006,55(9):4962-4967
根据Li提出的平顶光束模型和部分相干光理论,推导出部分相干平顶光束在线性增益(损耗)介质中传输的光谱分布解析表达式,定量研究了部分相干平顶光束在线性增益(损耗)介质中传输的光谱特性,分析了近场和远场轴上光谱的变化特点,以及介质的增益(损耗)特性、光源的中心频率、空间相干参数以及谱宽等因素对光谱变化的影响. 研究结果表明,部分相干平顶光束在线性增益(损耗)介质中传输时,光源的中心频率、光谱宽度、空间相干参数对相对谱移量影响较大,但对光谱分布随传输距离的总体变化趋势影响较小,而光谱分布随传输距离的总体变化趋势则主要由平顶光束的阶数所决定. 关键词: 部分相干平顶光束 光谱特性 谱移 线性增益(损耗)介质  相似文献   

6.
10Gb/s单信道光纤传输系统性能仿真研究   总被引:1,自引:1,他引:0  
光纤传输系统的优化设计是光纤通信质量的重要保证.本文基于光子传输设计套件(PTDS)软件平台,对光纤传输系统的传输特性作了大量仿真研究,并得出分析了一些重要参量如光纤长度,光纤的损耗和衰减,光功率大小等对光传输系统的影响规律,给出了相应的补偿措施.本文研究结果对优化光纤传输系统有一定的参考价值.  相似文献   

7.
为改善全光纤波长交错滤波器(Interleaver)的输出特性,提出了一种将带自反馈光纤谐振腔的2×2光纤耦合器作为马赫-曾德尔干涉仪(MZI)输出端耦合器的新型全光纤MZI-Interleaver,推导了该器件的输出表达式,并进行了数值模拟分析.分析结果表明:改进后的MZI-Interleaver透射波形更加接近于方波,阻带抑制和过渡带滚降特性明显加强;与传统的光纤谐振腔辅助MZI-Interleaver相比,在考虑传输损耗的情况下,改进后的MZI-Interleaver相干涉的两束光信号不存在幅度差异,因此降低了传输损耗对全光纤MZI-Interleaver消光特性的影响.  相似文献   

8.
大芯径石英阶跃光纤光谱损耗测量研究   总被引:1,自引:0,他引:1  
大芯径石英阶跃光纤的谱损耗是光纤传输性能的重要参数之一。介绍了大芯径光纤光谱衰减的测量方法,对大芯径阶跃光纤在400~600nm光谱范围内的谱损耗特性进行了研究。结果表明,光纤在400~600 nm范围内的谱损耗随波长的减小而增大,通过实测得到的600nm处的损耗系数为12 dB/km,400nm处的光谱损耗系数为96dB/km。  相似文献   

9.
隋可融  汤晓黎  朱晓松  石艺尉 《光子学报》2008,37(11):2186-2190
采用液相化学镀膜法研制了内面镀有银膜和碘化银膜(Ag/AgI)的高性能空芯红外光纤.分析了绿色导航光和红外激光同时低损耗传输的光纤结构参量.长度1 m、内直径0.7 mm的Ag/AgI空芯光纤不仅在红外有低损耗传输特性,而且首次在波长530 nm处获得了7 dB/m的低传输损耗特性.满足可见光作为导航光的同轴传输要求.通过分析和改进实验工艺参量,有效降低Ag和AgI薄膜的表面粗糙度.给出了高性能Ag/AgI空芯光纤的介质镀膜的具体工艺参量.  相似文献   

10.
TN25 2005031957 温度对聚合物光纤损耗影响的初步研究=Elementary re- search of the effect of temperature on polymer optical fiber [刊,中]/耿宝宏(西安交通大学电气工程学院.陕西,西安 (710049)),王斌…∥光通信研究.-2004(4).-44-46 通过对聚合物光纤(POF)损耗温度特性实验结果的 分析,并结合POF材料的差示扫描量热曲线(DSC曲线), 得出了在实验温度范围内POF损耗的变化规律。探讨了 影响POF损耗的诸因素与温度的关系,从理论上给出了  相似文献   

11.
大模场单模光纤在高功率激光器、高功率光传输和高灵敏度传感器等领域具有重要意义.设计了一种新型超低损耗大模场单模光纤,包层空气孔由掺氟硅玻璃棒代替,掺氟硅玻璃棒排列呈六重准晶体结构.基于有限元法对光纤的传输特性进行了数值模拟.研究了光纤结构参量变化对模式特性和有效模场面积的影响.结果表明:波长在1064 nm处,有效模场面积高达5197μm2,基模的限制性损耗低于10-5dB/km,解决了大模场与低损耗之间的冲突;在1064—2000 nm波段内,基模与二阶模的限制性损耗相差7个量级,实现单模传输;半径为10 cm时,弯曲损耗小于0.01 dB/m,具有良好的低弯曲损耗特性.此光纤能够提高光纤热损伤阈值,减少接续损耗,全固态结构有效避免了空气孔塌陷,简化制备工艺,对高功率激光传输、光纤激光器和光纤放大器的发展具有重要意义.  相似文献   

12.
设计了一种用于超连续谱合束的光纤合束器,这种合束器通过将多路光子晶体光纤拉锥后对接到一路多模光纤制成。借助有限差分波束传输法对该合束器进行了数值模拟,结果表明拉锥过渡长度和拉锥比例对耦合损耗具有较大影响,当拉锥过渡长度小于拉锥衍射长度时合束器有较大传输损耗,而过渡长度足够大以及拉锥比例较小时,合束器具有较低的耦合损耗以及优良的宽光谱耦合特性。所得出的数值结果为光子晶体光纤拉锥和超连续谱光纤合束器研制提供了一定的参考依据。  相似文献   

13.
硫化物光纤合束器可以实现对多个中红外光源(2~5μm)的功率组合和光谱扩展,基于自研As2S3多模光纤,使用低温熔融拉锥技术制备得到7×1中红外光纤合束器,分析了拉锥区域的损耗产生机理,并表征和评估了合束器的传输效率和光束质量。实现了输入光纤合束端与输出光纤的高质量熔接(熔接点损耗低至0.45 dB,抗拉张力超过300 g),合束器平均传输效率约为80%,单通道最高输出功率为4.32 W,表现出了优良的传输特性和功率承载能力。  相似文献   

14.
级联长周期光栅光谱特性   总被引:5,自引:0,他引:5  
崔丽萍  吴亚明 《光学学报》2005,25(8):019-1024
利用传输矩阵法分析了级联长周期光栅的光谱特性,讨论了级联处光纤的长度、位置以及包层模损耗系数对级联长周期光栅光谱的影响,并对级联长周期光栅和相移长周期光栅的光谱进行了比较。结果表明两者光谱存级联光纤长度较小或级联位置靠近光栅两端时具有较强的一致性,而在级联处光纤较长并且级联位置在中间时,两者表现出截然不同的光谱特性;在不考虑其他损耗的情况下,如果只改变级联处光纤长度,级联长周期光栅总量守恒;此外,当级联长周期光栅在级联处光纤包层模损耗系数较大时,级联长周期光栅的光谱等效于两个长周期光栅光谱的非相干叠加,从而为长周期光栅增益均衡器的优化设计和制作提供了一个简便有效的方法。  相似文献   

15.
硫系玻璃材料具有极高的线性和非线性光学性能,在此基础上制备的悬吊芯结构的硫系光纤较之石英玻璃光纤或普通结构硫系玻璃光纤具备非线性更高、零色散点可调和红外透过光谱宽等特性,因此在红外波段的光谱展宽及化学生物传感等方面均具有非常重要的应用潜能。根据硫系玻璃悬吊芯光纤及超连续(SC)谱的研究发展,提出一种通过挤压高纯块状硫系玻璃制备理想结构的四孔硫系玻璃悬吊芯光纤的方法。该新型机械挤压法保证了玻璃性能稳定和光纤结构可调的特性。获得了低损耗(波长为3.8μm处的损耗仅为0.17 d B/m)的硫系悬吊芯光纤,此外分别测试了玻璃和光纤的相关光学性能。进一步讨论了As2S3玻璃样品的可见及红外透过性能及光纤的传输损耗谱、传输模式,利用中红外光参量放大激光光源(OPA)抽运光纤,获得了SC谱的产生,其展宽光谱在红外区域最宽可达3000 nm(1500~4500 nm),理论展宽可达6000 nm。  相似文献   

16.
TN25 2004010382 单模光纤渐逝波传输分析=Analysis of evanescent wavetransmission on single-mode optical fibers[刊,中]/王廷云(上海大学光纤研究所.上海(201800)),陈振宜…∥光电子·激光.—2003,14(2).—136-139 基于光波导理论,分析了单模光纤的渐逝波传输特性,在光纤包层介质具有吸收特性的情况下,导出了渐逝波传输的透入深度公式,得出了单模光纤在轴向上的功  相似文献   

17.
采用全矢量有限元法,仿真设计了一种工作在2.5THz频段的中空芯太赫兹光子晶体光纤,用环烯烃聚合物材料(COC)制备了光纤样品,利用CO2激光泵浦气体太赫兹源搭建了测试平台并对光纤的太赫兹波传输性能进行了测试。实测光纤最低损耗0.17dB/cm、平均损耗约0.5dB/cm,在弯曲90°情况下光纤传输损耗波动小于5%,具有良好的可弯曲性;光纤输出端口的模场分布测试结果表明,光纤是以主模进行传输,太赫兹能量很好地被束缚在光纤芯中。  相似文献   

18.
提出并设计了一种基于电光聚合物的锥形波导,可用于单模光纤与电光聚合物波导器件之间的连接.锥形波导中采用了宽度锥形和折射率锥形结构.宽度锥形采用劈形形状,通过宽度和折射率的缓慢变化实现模场转换.劈形形状的宽度锥形具有较小的损耗且易于制作,折射率锥形可采用灰度掩膜光刻技术制作.研究了锥形波导的传输损耗与锥形波导的长度、波导宽度和厚度、材料吸收损耗等参数的关系及其优化,分析了锥形波导中的功率传输、模场分布与模式转换效率.结果显示锥形波导的传输损耗小于0.37 dB,光纤-波导-光纤的连接损耗优于1.62 dB,对插入损耗的改善达到8.78 dB,模场转换效率达到了83.7%.  相似文献   

19.
王豆豆  王丽莉 《物理学报》2010,59(5):3255-3259
以新型光学聚合物Topas 环烯烃共聚物(折射率为1.53)为基质,设计了四种微结构聚合物光纤.应用有限元方法对各种光纤在波长0.5—2.0 μm范围内的基模有效折射率、模场面积和数值孔径进行了计算.研究了结构参数对模场分布、单模特性和色散特性的影响.得出了具有极大/小模场面积、无限单模传输和平坦近零色散的光纤结构参数.与石英、聚甲基丙烯酸甲酯基质的微结构光纤相比,该光纤具有更大的数值孔径和较宽的平坦近零色散范围.为光纤的制备提供了理论指导. 关键词: 微结构聚合物光纤 有限元方法 传输特性 Topas 环烯烃共聚物  相似文献   

20.
程兰  罗兴  韦会峰  李海清  彭景刚  戴能利  李进延 《物理学报》2014,63(7):74210-074210
全固态光子带隙光纤由于其独特的带隙和色散特性以及易于和传统光纤熔接的优势,引起了国内外研究人员的广泛关注.本文采用等离子体化学气相沉积工艺结合堆叠拉制法制备了全固态光子带隙光纤,并运用频域有限差分法模拟了其损耗和色散特性.该光纤1550 nm处有较低损耗且单模传输,计算得到1550 nm处的有效模场面积和色散分别为191.81μm2和16.418 ps/(km·nm),在测试范围1500—1650 nm内损耗小于0.15 dB/m.结合实验结果,对光纤参数做了进一步模拟优化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号