首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conductive composite film which contains nafion (NF) doped multi-walled carbon nanotubes (MWCNTs) along with the incorporation of poly(malachite green) (PMG) has been synthesized on glassy carbon electrode (GCE), gold and indium tin oxide (ITO) electrodes by potentiostatic methods. The presence of MWCNTs in the composite film (MWCNTs-NF-PMG) enhances surface coverage concentration (Γ) of PMG to ≈396%, and increases the electron transfer rate constant (ks) to ≈305%. Similarly, electrochemical quartz crystal microbalance study reveals the enhancement in the deposition of PMG at MWCNTs-NF film. The surface morphology of the composite film deposited on ITO electrode has been studied using scanning electron microscopy (SEM) and scanning tunneling microscopy (STM). These two techniques reveal that the PMG incorporated on MWCNTs-NF film. The MWCNTs-NF-PMG composite film also exhibits promising enhanced electrocatalytic activity towards the simple aliphatic alcohols such as methanol, ethanol and propanol. The electroanalytical responses of analytes at NF-PMG and MWCNTs-NF-PMG films were measured using both cyclic voltammetry (CV) and differential pulse voltammetry (DPV). From electroanalytical studies, well defined voltammetric peaks have been obtained at MWCNTs-NF-PMG composite film for methanol, ethanol and propanol at Epa = 609, 614 and 602 mV respectively. The sensitivity of MWCNTs-NF-PMG composite film towards methanol, ethanol and propanol in CV technique are 0.59, 0.36 and 0.92 μA mM−1 cm−2 respectively, which are higher than NF-PMG film. Further, the sensitivity values obtained using DPV are higher than the values obtained using CV technique.  相似文献   

2.
A composite film (MWCNTs-PNF) which contains multi-walled carbon nanotubes (MWCNTs) along with the incorporation of poly(new fuchsin) (PNF) has been synthesized on glassy carbon electrode (GCE), gold (Au) and indium tin oxide (ITO) by potentiostatic methods. The presence of MWCNTs in the composite film enhances surface coverage concentration (Γ) of PNF to ≈176.5%, and increases the electron transfer rate constant (ks) to ≈346%. The composite film also exhibits promising enhanced electrocatalytic activity towards the mixture of biochemical compounds such as adenine (AD), guanine (GU) and thymine (THY). The surface morphology of the composite film deposited on ITO has been studied using scanning electron microscopy and atomic force microscopy. These two techniques reveal that the PNF incorporated on MWCNTs. Electrochemical quartz crystal microbalance study reveals the enhancement in the functional properties of MWCNTs and PNF. The electrocatalytic responses of analytes at MWCNTs and MWCNTs-PNF films were measured using both cyclic voltammetry (CV) and differential pulse voltammetry (DPV). From electrocatalysis studies, well separated voltammetric peaks have been obtained at the composite film for AD, GU and THY, with the peak separation of 320.3 and 132.7 mV between GU-AD and AD-THY respectively. The sensitivity of the composite film towards AD, GU and THY in DPV technique is 218.18, 12.62 and 78.22 mA M−1 cm−2 respectively, which are higher than MWCNTs film. Further, electroanalytical studies of AD, GU and THY present in single-strand deoxyribonucleic acid (ssDNA) have been carried out using semi-derivative CV and DPV.  相似文献   

3.
Ying Li 《Talanta》2009,79(2):486-674
A conductive biocomposite film (MWCNTs-PANIFAD) which contains multi-walled carbon nanotubes (MWCNTs) along with the incorporation of poly(aniline) and poly(flavin adenine dinucleotide) co-polymer (PANIFAD) has been synthesized on gold and screen printed carbon electrodes by potentiostatic methods. The presence of MWCNTs in the MWCNTs-PANIFAD biocomposite film enhances the surface coverage concentration (Γ) of PANIFAD and increases the electron transfer rate constant (ks) to 89%. Electrochemical quartz crystal microbalance studies reveal the enhancements in the functional properties of MWCNTs and PANIFAD present in MWCNTs-PANIFAD biocomposite film. Surface morphology of the biocomposite film has been studied using scanning electron microscopy and atomic force microscopy. The surface morphology results reveal that PANIFAD incorporated on MWCNTs. The MWCNTs-PANIFAD biocomposite film exhibits promising enhanced electrocatalytic activity towards the oxidation of p-acetamidophenol. The cyclic voltammetry has been used for the measurement of electroanalytical properties of p-acetamidophenol by means of PANIFAD, MWCNTs and MWCNTs-PANIFAD biocomposite film modified gold electrodes. The sensitivity value of MWCNTs-PANIFAD film (88.5 mA mM−1 cm−2) is higher than the values which are obtained for PANIFAD (28.7 mA mM−1 cm−2) and MWCNTs films (60.7 mA mM−1 cm−2). Finally, the flow injection analysis (FIA) has been used for the amperometric detection of p-acetamidophenol at MWCNTs-PANIFAD film modified screen printed carbon electrode. The sensitivity value of MWCNTs-PANIFAD film (3.3 mA mM−1 cm−2) in FIA is also higher than the value obtained for MWCNTs film (1.1 mA mM−1 cm−2).  相似文献   

4.
采用周期性密度泛函理论研究了H2和O2在Pd(111),Pd(100)及Pd(110)表面上直接合成H2O2的反应机理,对反应的主要基元步骤进行了计算和分析.结果表明,Pd(111)表面对H2O2直接合成的催化选择性最好,表面原子密度较低的Pd(100)表面和Pd(110)表面上含有O-O键的表面物种解离严重,不利于H2O2的生成.H2O2的选择性与含有O-O键表面物种的O-O键能和表面物种的结合能有关.含有O-O键的表面物种在表面的结合能越大,越容易发生解离,不利于形成H2O2.  相似文献   

5.
用循环伏安、交流伏安和交流阻抗法对Dawson型磷钨杂多阴离子P2W18O626-的电化学性质进行了详细研究, 循环伏安结果显示, P2W18O626-在pH 2.52的0.1 mol·L-1 Na2SO4+NaHSO4溶液中有两对可逆的单电子还原-氧化波和两对可逆的双电子还原-氧化波. 单电子波的峰电位和电流与溶液的pH无关, 双电子波的峰电位则随溶液pH的增加而负移, 峰电流降低, 表明双电子电极过程有H+参与, 其数目为2. 交流阻抗谱表明P2W18O626-的电极过程完全受扩散控制, 实验测定其扩散系数(DO)为2.5×10-6 cm2·s-1. 循环伏安结果表明P2W18O626-的第III对波对O2还原为H2O2具有显著的电催化作用, 催化效率约达300%. 将P2W18O626-应用于PW11O39Fe(III)(H2O)4-构成的类电-芬顿过程, 使该过程对硝基苯的降解效率显著提高.  相似文献   

6.
Pd/Al2O3 catalysts were prepared by the impregnation method and were used for the direct formation of hydrogen peroxide from H2 and O2. The H2O2 concentration and selectivity were strongly dependent on the solubility of hydrogen in the reaction medium. The modification of the support by halogenate has a beneficial effect on the selectivity. The state of the active Pd on Pd/Al2O3 catalysts was studied using X-ray photoelectron spectroscopy, and Pd(0) was found to be active.  相似文献   

7.
In this work, acid functionalized multi-wall carbon nanotubes (MWCNTs) were modified with imidazolium-based ionic liquids. The selective oxidation of various alcohols with hydrogen peroxide catalyzed by[PZnMo2W9O39]5-, ZnPOM, supported on ionic liquids-modified with MWCNTs, MWCNTAPIB, is reported. This catalyst[ZnPOM@APIB-MWCNT], was characterized by X-ray diffraction, scanning electron microscopy (SEM) and FT-IR spectroscopic methods. This heterogeneous catalyst exhibited high stability and reusability in the oxidation reaction without loss of its catalytic performance.  相似文献   

8.
Sha Y  Qian L  Ma Y  Bai H  Yang X 《Talanta》2006,70(3):556-560
Multilayer films containing multiwall carbon nanotubes and redox polymer were successfully fabricated on a screen-printed carbon electrode using layer-by-layer (LBL) assembled method. UV-vis spectroscopy, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy and electrochemical method were used to characterize the assembled multilayer films. The multilayer films modified electrodes exhibited good electrocatalytic activity towards the oxidation of ascorbic acid (AA). Compared with the bare electrode, the oxidation peak potential negatively shifted about 350 mV (versus Ag/AgCl). Furthermore, the modified screen-printed carbon electrodes (SPCEs) could be used for the determination of ascorbic acid in real samples.  相似文献   

9.
改进了碳纳米管在壳聚糖溶液中的分散方法,制备了多壁碳纳米管/壳聚糖多层膜修饰玻碳电极,对比了不同修饰层数膜电极的循环伏安和电化学阻抗行为,5层多壁碳纳米管/壳聚糖膜修饰玻碳电极的电化学性能优良.在最优实验条件下,该修饰玻碳电极对邻苯二酚(CAT)有灵敏的响应,CAT浓度在3.99×10-6~9.09×10-4mol/L范围内与氧化峰电流呈良好的线性关系,检出限为2.39×10-6mol/L(S/N=3).该修饰玻碳电极性能稳定,测定4×10-5mol/LCAT溶液,RSD(n=10)为2.1%;15周后,该电极的响应值仅降低1.9%.  相似文献   

10.
A variety of organosulfur compounds have been selectively oxidized to the corresponding sulfoxides by either H2O2 or HNO3 using a newly developed solid acid catalyst composed of 84.5% of TiO2 and 15.5% of [Ti4H11(PO4)9nH2O (n = 1-4). The chemoselective oxidation of sulfides in the presence of vulnerable groups such as -CN, -CC-, -CHO, or -OH, as well as sulfoxidation of substrates like benzothiazole, glycosyl sulfide, and dibenzothiophenes is some of the important attribute of the protocol. Nitric acid, under the present experimental conditions, brings about relatively better selectivity than hydrogen peroxide.  相似文献   

11.
The incorporation of carbon nanotubes to a Nafion/tetraruthenated cobalt porphyrin/ glassy carbon electrode (GC/Nf/CoTRP vs GC/Nf/CNTCoTRP) enhanced the amperometric determination of hydrogen peroxide. Both electrodes produced a decrease in the overpotential required for the hydrogen peroxide oxidation in about 100 mV compared to glassy carbon under the same experimental conditions. Nevertheless, for GC/Nf/CNT/CoTRP, the increase in the current is remarkable. The GC/Nf/CoTRP modified electrode gave no significant analitycal signal for hydrogen peroxide reduction. Moreover, a great increase in current is observed with GC/Nf/CNT/CoTRP at ?150mV which suggests a significant increase in the sensitivity of the modified electrode. Scanning electrochemical microscopy (SECM) revealed an enhancement in the electroactivity of the GC/Nf/CNT/CoTRP modified electrode. This fact has been explained in terms of enhanced homogeneity of the electrodic surface as a consecuence of better dispersibility of CNT‐CoTRP produced by a Nafion polyelectrolyte.  相似文献   

12.
In this study, a new facile preparation method of nanocomposites consisting of graphene oxide and manganese dioxide nanowires(GO/MnO_2 NW_s) was developed. The morphology, structure and composition of the resulted products were characterized by transmission electron microscopy, X-ray diffraction and N_2 adsorption and desorption. The GO/MnO_2 nanocomposite was used as an electrode material for non-enzymatic determination of hydrogen peroxide. The proposed sensor exhibits excellent electrocatalytic performance for the determination of hydrogen peroxide in phosphate buffer solution(PBS, pH7) at an applied potential of 0.75 V. The non-enzymatic biosensor for determination of hydrogen peroxide displayed a wide linear range of 4.90 mmol L~(-1)–4.50 mmol L~(-1)with a correlation coefficient of 0.9992, a low detection limit of 0.48 mmol L~(-1) and a high sensitivity of 191.22μA(mmol L~(-1))~(-1)cm~(-2)(signal/noise, S/N = 3). Moreover, the non-enzymatic biosensor shows an excellent selectivity.  相似文献   

13.
A novel bi-functional sensor, based on CdS nanocrystals (NCs) and hemoglobin (Hb) multilayer films, designated as {Hb/CdS}n, modified glassy carbon electrode (GCE) by layer-by-layer (LbL) assembly, has been presented. The electrogenerated chemiluminescence (ECL) and electrochemical properties of {Hb/CdS}n have been investigated in detail. Hb in the multilayer films can enhance the stability of electrogenerated species of CdS NCs, and CdS NCs can also promote the direct electron transfer between Hb and GCE. As a consequence experimentally, the multilayer films modified GCE is suitable to be used as a bi-functional sensor, ECL sensor and electrochemical sensor, to determine H2O2 in obviously different concentration. In high concentration of H2O2, this sensor as an ECL sensor shows a linear response from 15 μM up to 18 mM. In the lower concentration of H2O2, it as an amperometric one shows two linear ranges of amperometric responses to the concentration of H2O2 ranging from 6.0 to 31.0 μM and from 6.0 μM down to 40 nM with a detection limit of 20 nM, based on the high stability of ECL by {Hb/CdS}n and the excellent electrocatalytical ability of Hb to H2O2. Thus, {CdS/Hb}n modified electrodes would have a great merit to expand the application of biosensors to life science and environmental science.  相似文献   

14.
A novel diselenide was synthesized in good yield via only four steps from phenol, and was employed as the catalyst for the Baeyer-Villiger oxidation with 30% H2O2 to obtain lactones in good yields.  相似文献   

15.
Yi Wang  Mi Yi  Kun Wang  Shuqin Song 《催化学报》2019,40(4):523-533
Hydrogen peroxide (H2O2) is a very useful chemical reagent, but the current industrial methods for its production suffer from serious energy consumption problems. Using high-activity and high-selectivity catalysts to electrocatalyze the oxygen reduction reaction (ORR) through a two-electron (2e?) pathway is a very promising route to produce H2O2. In this work, we obtained partially oxidized multi-walled carbon nanotubes (MWCNTs) with controlled structure and composition by oxidation with concentrated sulfate and potassium permanganate at 40°C for 1 h (O-CNTs-40-1). The outer layers of O-CNTs-40-1 are damaged with defects and oxygen-containing functional groups, while the inner layers are maintained intact. The optimized structure and composition of the partially oxidized MWCNTs ensure that O-CNTs-40-1 possesses both a sufficient number of catalytic sites and good conductivity. The results of rotating ring disk electrode measurements reveal that, among all oxidized MWCNTs, O-CNTs-40-1 shows the greatest improvement in hydrogen peroxide selectivity (from ~ 30% to ~ 50%) and electron transfer number (from ~ 3.4 to ~ 3.0) compared to those of the raw MWCNTs. The results of electrochemical impedance spectroscopy measurements indicate that both the charge-transfer and intrinsic resistances of O-CNTs-40-1 are lower than those of the raw MWCNTs and of the other oxidized MWCNTs. Finally, direct tests of the H2O2 production confirm the greatly improved catalytic activity of O-CNTs-40-1 relative to that of the raw MWCNTs.  相似文献   

16.
Summary Novel amorphous Ni-La-B/-Al2O3 catalysts have been developed for the production of hydrogen peroxide from carbon monoxide, water and oxygen. The experimental investigation confirmed that the catalyst dried at 120ºC in air shows the best initial activity. The deactivation of amorphous Ni-La-B/-Al2O3 catalysts was also studied.  相似文献   

17.
利用溶胶-凝胶法合成纳米NiCo2O4,并利用X射线衍射和透射电镜分析其结构和表面形貌. 结果表明NiCo2O4具有尖晶石结构, 平均粒径约为15 nm. 利用电势线性扫描和恒电势法测定了其对H2O2在碱性溶液中电化学还原反应的催化性能. 发现NiCo2O4对H2O2电化学还原具有高的催化活性和稳定性, 在H2O2浓度低于0.6 mol·L-1时, 其电化学还原反应主要通过直接还原途径进行. 以NiCo2O4为阴极催化剂的Al-H2O2半燃料电池在室温下的开路电压达1.6 V; 在1.0 mol·L-1 H2O2溶液中, 峰值功率密度达209 mW·cm-2, 此时电流密度为220 mA·cm-2.  相似文献   

18.
制备了纳米Nd2O3/多壁碳纳米管修饰电极并用于亚硝酸盐的检测。采用原子力显微镜、X-粉末衍射仪表征制备的纳米材料。实验表明:修饰电极对亚硝酸根的氧化具有明显地电催化作用。利用示差脉冲伏安法测定亚硝酸盐,其氧化峰电流和其浓度在20μmol·L-1-20 mmol·L-1范围内呈现良好的线性关系,检测线为0.83μmol·L-1(S/N=3)。更重要的是,实验结果表明:与Nd2O3修饰电极相比,多壁碳纳米管能显著地提高电极的稳定性。此外,修饰电极具有良好的选择性,能用于样品的检测,结果令人满意。  相似文献   

19.
The transition metal-substituted heteropolyoxoanion, Cd4(H2O)2(As2W15O56)212− (As4W30Cd4), is one of the trivacant Dawson derivatives. Its redox electrochemistry has been studied in acid buffer solutions using cyclic voltammetry. It exhibited three steps of four-electron redox waves attributed to redox processes of the tungsten-oxo framework. Through layer-by-layer assembly, the compound was first successfully immobilized on a 4-aminobenzoic acid modified glassy carbon electrode surface by alternate deposition with a quaternized poly(4-vinylpyridine) partially complexed with [Os(bpy)2Cl]2+/+ (denoted as QPVP-Os). Thus, prepared multilayer films have been characterized by cyclic voltammetry (CV), X-ray photoelectron spectroscopy (XPS) and UV-vis spectroscopy (UV-vis). The electrocatalytic activities of the multilayer films containing As4W30Cd4 have been investigated on the reduction of three substrates of important analytical interests, NO2, BrO3 and IO3. And with the increase of the number of As4W30Cd4 layers, the catalytic current towards the reduction of BrO3 was enhanced and the catalytic potential shifted positively.  相似文献   

20.
With an average diameter of 100-150 nm, composite nanotubes of polyaniline (PANI)/multiwalled carbon nanotubes (MWNTs) containing Fe3O4 nanoparticles (NPs) were synthesized by a two-step method. First, we synthesized monodispersed Fe3O4 NPs (d=17.6 nm, σ=1.92 nm) on the surface of MWNTs and then decorated the nanocomposites with a PANI layer via a self-assembly method. SEM and TEM images indicated that the obtained samples had the morphologies of nanotubes. The molecular structure and composition of MWNTs/Fe3O4 NPs/PANI nanotubes were characterized by Fourier transform infrared spectra (FTIR), energy dispersive X-ray spectrometry (EDX), X-ray photoelectron spectra (XPS), X-ray diffraction (XRD) and Raman spectra. UV-vis spectra confirmed the existence of PANI and its response to acid and alkali. As a multifunctional material, the conductivity and magnetic properties of MWNTs/Fe3O4 NPs/PANI composites nanotubes were also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号