共查询到20条相似文献,搜索用时 0 毫秒
1.
The diagnosis of Duchenne muscular dystrophy (DMD) has historically utilized either PCR or requires Southern blot analysis, a southern blot analysis, however, is not amenable to incorporation in a microdevice format. A PCR amplification-based method has been developed, and we have previously coupled this amplification with microchip separation of the PCR fragments for DMD diagnosis. Diagnoses of affected patients were performed by comparing exon concentrations to those of control samples amplified at the same time. To accurately identify mutations in patient samples, this work established normal ranges for the concentration of each amplified exon fragment using control samples amplified over successive days. Our studies show that the number of cycles used in the amplification process affects this range. Affected patient samples were analyzed using these normal ranges and the mutations detected by Southern blot analysis were also diagnosed using the microchip separation method. Employing the microchip separation method decreases the time required for the analysis, but the time required for DNA purification and PCR amplification must also be decreased for faster total analysis of patient samples. Development of microchip methods for these processing steps is one approach for reducing the individual times, while also providing the possibility of integrating these steps in a single device. Here we report on the microchip extraction of genomic DNA from whole blood using a novel sol–gel matrix that is easily formed in microdevices. IR-mediated PCR amplification of a β-globin fragment from genomic DNA followed by electrophoretic analysis on a single integrated microdevice is presented for the first time. Work towards the development of a micro-total analysis device for DMD diagnosis, through integration of all processing steps on a single device, is also discussed. 相似文献
2.
Recent advances in microfluidic systems, particularly in the Micro Total Analysis System (μTAS) or Lab On a Chip (LOC), drive the current analysis tools and equipment towards miniaturization, rapid at-line testing and mobility. The state-of-the-art microfluidic technology targets a wider range but smaller volumes of analytes, making the analytical procedure relatively easier and faster. This trend together with faster electronics and modern instrumentation systems will make real-time and in situ analysis a definite possibility. This review focuses on microchip capillary electrophoresis with amperometric detection (MCE-AD) for the detection of DNA and other electroactive analytes. The problems associated with the microchip design, in particular the choice of materials and the configuration of electrodes are discussed thoroughly and solutions are proposed. Significant developments in the related areas are also covered and reviewed critically. 相似文献
4.
Hypervalent iodine compounds constitute a well-established and broadly used reagent family in organic synthesis. As they are usually either used in stoichiometric quantities or generated in situ from an aryl iodide precursor using a terminal oxidant, the associated waste and separation problems pose major challenges en route to sustainable and scalable processes. In this regard, the use of inexpensive electric current as a traceless oxidant for the in-situ generation of hypervalent iodine has emerged as a promising alternative. This review summarizes the advances over the past 2 years, including improved electrolysis protocols, new synthetic applications, and concepts for enhancing the sustainability of the reactions. 相似文献
5.
A large variety of potentiometric biosensors is developed using biocatalytic and bioaffinity-based biosensing schemes. However, only few of them could be applied for the biomedical analysis. The most promising are those for the detection of main products of protein metabolism, namely urea and creatinine. A novel group of potentiometric biosensors is constituted by bioaffinity-based devices that could be used for immunoassays or genoanalysis. This paper reviews the recent trends in these fields as well as discusses advantages, limitations and pitfalls of the developed biosensors. Some potentiometric biosensors useful for real biomedical analysis are reported in detail. 相似文献
6.
The ability to analyse complex multi-component mixtures without resorting to tedious separation procedures is extremely useful for routine analysis. Single-wavelength fluorescence measurement is limited in its ability to analyse complicated multi-component samples when they have severely overlapping emission and/or excitation spectra. This can be overcome by using synchronous fluorescence scan (SFS), where overlapping of spectra can be minimized. The selectivity of SFS can still be increased by taking derivative spectrum, applying different multivariate methods, selective fluorescence quenching, three-dimensional synchronous measurement or using some of these procedures in combination. Recent developments in various synchronous fluorescence methods for analysis of multi-component systems are discussed in this review. 相似文献
7.
Development of sensing systems for trace metals is highly important because the abnormal concentration of some metals or the presence of some traces of toxic metals is very dangerous. The stripping analysis is an efficient way to detect metals even at low concentrations. Much work has been carried out to develop highly sensitive, stable, reproducible, and cheap electrochemical sensors for metal ions. This review summarizes the recent progress is stripping analysis of trace metals, focusing on works published from 2015 to 2019. 相似文献
8.
By coupling and scanning simultaneously excitation and the emission monochromators of a common spectrofluorometer, enhanced resonance light scattering (RLS) signals could be obtained. The enhanced RLS signals could be used for designating bio-assemblies, aggregation species, and analytical purposes. Herein, we review the reports since the year of 2000 concerning the biochemical and pharmaceutical analysis with the RLS measurements, and discuss the possible developments of this technique. 相似文献
9.
The development of analytical methods that respond to the growing need to perform rapid ‘in situ’ analyses shows disposable screen-printed electrodes (SPEs) as an alternative to the traditional electrodes. This review presents recent developments in the electrochemical application of disposable screen-printed sensors, according to the types of materials used to modify the working electrode. Therefore, unmodified SPE, film-modified SPE, enzyme-modified SPE and antigen/antibody-modified SPE are described. Applications are included where available. 相似文献
10.
Perfluoroalkyl substances (PFASs) are proliferated into the environment on a global scale and present in the organisms of animals and humans even in remote locations. Persistent organic pollutants of that kind therefore have stimulated substantial improvement in analytical methods. The aim of this review is to present recent achievements in PFASs determination in various matrices with different methods and its comparison to measurements of Total Organic Fluorine (TOF). Analytical methods used for PFASs determinations are dominated by chromatography, mostly in combination with mass spectrometric detection. However, HPLC may be also hyphenated with conductivity or fluorimetric detection, and gas chromatography may be combined with flame ionization or electron capture detection. The presence of a large number of PFASs species in environmental and biological samples necessitates parallel attempts to develop a total PFASs index that reflects the total content of PFASs in various matrices. Increasing attention is currently paid to the determination of branched isomers of PFASs, and their determination in food. Figure The aim of this review is to present recent achievements in perfluoroalkyl substances (PFASs) determination in various matrices with different methods and its comparison to measurements of Total Organic Fluorine (TOF). Increasing attention is currently paid to the determination of branched isomers of PFASs, and their determination in food. 相似文献
11.
Carbohydrates are a very important group of compounds due to their roles as structural materials, sources of energy, biological functions and environmental analytes; they are characterized by their structural diversity and the high number of isomers they present. While many advances have been made in carbohydrate analysis, the sample preparation remains difficult. This review aims to summarize the most important treatments which have been recently developed to be applied prior to the analysis of carbohydrates by chromatographic techniques. Due to the multiplicity of structures and matrices, many different techniques are required for clean-up, fractionation and derivatization. A number of new techniques which could be potentially adequate for carbohydrate characterization have also been revised. 相似文献
12.
Recent advances in proteomics have provided impetus towards the development of robust technologies for high-throughput studies
of enzymes. The term “catalomics” defines an emerging ‘-omics’ field in which high-throughput studies of enzymes are carried
out by using advanced chemical proteomics approaches. Of the various available methods, microarrays have emerged as a powerful
and versatile platform to accelerate not only the functional annotation but also the substrate and inhibitor specificity (e.g.
substrate and inhibitor fingerprinting, respectively) of enzymes. Herein, we review recent developments in the fabrication
of various types of microarray technologies (protein-, peptide- and small-molecule-based microarrays) and their applications
in high-throughput characterizations of enzymes. 相似文献
13.
This paper presents an overview of the most relevant contributions in the field of expert system (ES) applications in chemical analysis of foods, along with a critical discussion of future, would-be developments. It illustrates the possibilities offered as well as the fact that quality control laboratories should be aware of the power of artificial intelligence that modern computer technology affords. It is worth noting that the applications described are straightforward with a certain versatility and can, therefore, be implemented for other analytes and/or food samples. Special attention is devoted to the promising distributed knowledge-based systems due to their potential advantages over the existing centralized approaches, as inferred from a recent example of application to the on-line monitoring of some key chemical parameters in the course of a food production process. Short and middle term predictions concerning the potential of ES in food analysis are also made. 相似文献
14.
Microfluidics offers an ideal platform to integrate cell-based assays with electric measurements. The technological advances
in microfluidics, microelectronics, electrochemistry, and electrophysiology have greatly inspired the development of microfluidic/electric
devices that work with a low number of cells or single cells. The applications of these microfluidic systems range from the
detecting of cell culture density to the probing of cellular functions at the single-cell level. In this review, we introduce
the recent advances in the electric analysis of cells on a microfluidic platform, specifically related to the quantification
and monitoring of cells in static solution, on-chip patch-clamp measurement, and examination of flowing cells. We also point
out future directions and challenges in this field.
Figure Different microfluidic devices applied to electrical analysis of cells 相似文献
15.
整体柱是通过在柱管内原位聚合或固化的方法制备得到的具有多孔结构的整体棒状固定相,与传统的填充柱相比,具有通透性好、传质速率快、容易制备等优点,因此在分离分析领域特别是生物分离分析中发挥的作用日益增大。整体柱的制备及应用近年来也得到了快速发展,层出不穷的新型整体柱已被广泛用于色谱高效分离分析、固相萃取及酶反应器等方面,大大推动了分离分析科学的发展。本文主要总结了近五年来整体柱的制备技术及其在蛋白质组学应用中的一些最新研究进展。 相似文献
16.
Bisphenol A (BPA) is a well-known endocrine-disrupting industrial compound that is found throughout many aspects of our daily life; from the water we drink and the food we eat to the babies’ bottles and children’s plastic toys. Chronic exposure to BPA may result in some severe medical issues which account for the great importance of its monitoring and removal from everyday products. The use of molecularly imprinted polymers (MIPs) for that purpose has acquired a lot of traction in recent decades. MIPs are artificial antibodies with selective recognition cavities for specifically targeted substances. They are created using a variety of synthetic methods and employed in numerous types of sensors to be used in a wide range of applications. In this review, we focus on the different production methods of MIPs and the varied types of electrochemical and optical sensors that employed MIPs to detect and analyze BPA. Finally, the broad variety of applications of MIPs in environmental, foodstuff, and biological samples are thoroughly examined. Future expected trends and prospective developments are also assessed. 相似文献
17.
A brief review on biochemical kinetics in the twentieth century mainly concerned with enzyme kinetics and cooperative processes is presented. Molecular biology and, in particular, structural biology provided the basis for modeling biological phenomena at the molecular level. Structure was recognized as the ultimate and only level at which biological processes find an explanation that is satisfactory for chemists and physicists. A new epoch in biology was initiated by successful extensions of the molecular approach from individual molecules and reactions to the cellular and organismic level. Starting with sequencing of whole genomes in the 1980s more and more techniques became available that are suitable for upscaling from molecules to cells. A series of research programs was initiated: genomics dealing with sequencing the DNA of whole organisms, proteomics considering all proteins of a cell and their interactions, metabolomics studying all metabolic reactions of a cell or an organism, and functional genomics or systems biology aiming at an exploration of the dynamics of complete biological entities. At the same time computational facilities have experienced an unexpected development in speed of calculations and storing devices. At present computer simulations of whole cells at molecular resolution are within reach. The challenge for the theorist in biology is to develop methods for handling the enormously complex networks of gene regulation and metabolism in such a way that biological questions can be addressed. This goal cannot be achieved by dynamical systems theory alone. What is needed is a joint effort from different mathematical disciplines supported by empirical knowledge and tools from discrete mathematics to informatics. Two sections with selected examples from our own laboratory dealing with structural bioinformatics of RNA and with a dynamical systems approach to gene regulation are added. 相似文献
18.
The tube model for linear and branched architectures is nowadays able to predict in high precision the linear viscoelastic relaxation time spectrum. For linear chains, the involved time scales fit to the commonly accessible dynamic scattering techniques. This makes it possible to microscopically investigate the correlation between structures and relaxation processes. In branched systems, however, the hierarchical nature of relaxations limits direct investigation via these microscopic methods as the dynamic processes are prolongated to much longer relaxation times that are no more accessible to usual dynamic scattering methods. A way to overcome this difficulty is offered by the use of static small angle neutron scattering. Here, the combination of annealing and quenching steps after a step deformation provides unique information of the structure at particular times along the relaxation spectrum. This, however, necessitates the availability of architecturally clean and specifically deuterium labelled model polymers due to the sensitivity of the scattering method. Therefore, we outline in this contribution first the current status on the synthesis and analysis of such compounds with relation to neutron scattering. Secondly, we present exemplary neutron scattering results from in situ stress relaxation studies inside the neutron beam on linear and H-shaped branched polymers which were molecularly designed to highlight specific relaxation processes. We discuss the relevance of the tube model parameters in linear and non-linear studies. 相似文献
19.
The apparent density, an intrinsic physical property of polymer beads, plays an important role in the application of beads in micro-total analysis systems and separation. Here we have developed a new, facile and milligram-scale method to describe the motion of beads in aqueous solution and further detect the apparent density of beads. The motion of beads in solutions is determined by the viscosity of solutions and the density difference between beads and solutions. In this study, using various glycerol aqueous solutions with certain viscosities and densities, the motion time (i.e. floating or sedimentation time) of hybrid polymer beads was experimentally measured and theoretically deduced, and consequently, the apparent density of monodisperse beads can be quickly and easily calculated. The results indicated that the present method provided a more precise way to predict the movement of hybrid beads in aqueous solution compared with the approach for commercial use. This new method can be potentially employed in flow cytometry, suspension stability, and particle analysis systems. 相似文献
20.
In this review, application of thermal analysis techniques (differential scanning calorimetry, thermogravimetry, differential
thermal analysis, etc.) for fossil fuel characterization and kinetics are reviewed between 2001 and 2006. The results presented
clearly showed that thermal analysis applications are well-established techniques used in fossil fuel research area. 相似文献
|