首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Diametrically disubstituted bis(anthrylmethyl) derivative of 1,8-dimethylcyclam exhibited pronounced Hg2+- and Cd2+-selective fluorogenic behaviors in aqueous acetonitrile solution. A distinctive OFF-ON type signaling was observed for Hg2+ and Cd2+ ions in aqueous acetonitrile (CH3CN-H2O = 90:10, v/v) solution, while a selective ON-OFF type switching behavior toward Hg2+ ions was observed in solution having higher water content (CH3CN-H2O = 50:50, v/v). The detection limit for the analysis of Hg2+ ions in 50% aqueous acetonitrile was found to be 3.8 × 10−6 M. The selective OR logic gate behavior of the prepared compound toward two toxic heavy metal ions of Hg2+ and Cd2+ ions in CH3CN-H2O (90:10, v/v) suggests the possibility as a new chemosensing device for the two important target metal ions.  相似文献   

2.
A new chemically modified carbon paste electrode was constructed and used for rapid, simple, accurate, selective and highly sensitive simultaneous determination of cadmium, copper and mercury using square wave anodic stripping voltammetry (SWASV). The carbon paste electrode was modified by N,N′-bis(3-(2-thenylidenimino)propyl)piperazine coated silica nanoparticles. Compared with carbon paste electrode, the stripping peak currents had a significant increase at the modified electrode. Under the optimized conditions (deposition potential, −1.100 V vs. Ag/AgCl; deposition time, 60 s; resting time, 10 s; SW frequency, 25 Hz; pulse amplitude, 0.15 V; dc voltage step height, 4.4 mV), the detection limit was 0.3, 0.1 and 0.05 ng mL−1 for the determination of Cd2+, Cu2+ and Hg2+, respectively. The complexation reaction of the ligand with several metal cations in methanol was studied and the stability constants of the complexes were obtained. The effects of different cations and anions on the simultaneous determination of metal ions were studied and it was found that the electrode is highly selective for the simultaneous determination of Cd2+, Cu2+ and Hg2+. Furthermore, the present method was applied to the determination of Cd2+, Cu2+ and Hg2+ in water and some foodstuff samples.  相似文献   

3.
New dioxocyclam derivatives bearing two anthracene fluorophores were prepared, and their fluoroionophoric properties toward transition metal ions were investigated. Chemosensor 2 having anthrylacetamide moieties exhibited pronounced Hg2+- and Cu2+-selective fluoroionophoric properties in aqueous acetonitrile solution over other representative transition metal ions, as well as alkali and alkaline earth metal ions. Chemosensor 2 also exhibited Hg2+ and Cu2+ selectivity under competitive conditions in the presence of physiologically and environmentally important metal ions. The detection limits for the sensing of Hg2+ and Cu2+ ions were 7.8 × 10−6 and 1.5 × 10−6 M, respectively, in aqueous 95% acetonitrile solution.  相似文献   

4.
Fluorescent chemosensor 3 can sense Cu2+ ions (1-8 μM) even in the presence of elevated levels of Ni2+, Cd2+, Zn2+, Hg2+, Ag+ and Pb2+ (5000 μM). 3 can also analyze for Ag+ ions (50-500 μM) in the presence of Ni2+, Cd2+, Zn2+, Hg2+ and Pb2+ (5000 μM) but Cu2+ strongly interferes.  相似文献   

5.
Honglei Mu 《Tetrahedron letters》2007,48(31):5525-5529
A novel two-channel metal ion sensor has been synthesized from macrocyclic dioxotetraamine and 1,8-naphthalimide derivative. The metal ion-selective signaling behaviors of the sensor were investigated. The sensor presented the selective coloration for Cu2+ and Hg2+ that can be detected by the naked-eye, respectively. Besides, the addition of Cu2+ and Hg2+ quenched the fluorescence of 1 obviously and the detection limit was found to be 3 × 10−7 M for Cu2+ and 7 × 10−7 M for Hg2+. This sensor can be utilized for the visual and spectroscopic detection of Cu2+ or Hg2+ in the presence of the other competing metal ions.  相似文献   

6.
A fluorescent based receptor (4Z)-4-(4-diethylamino)-2-hydroxybenzylidene amino)-1,2dihydro-1,5-dimethyl-2-phenylpyrazol-3-one (receptor 3) was developed for the highly selective and sensitive detection of Cu2+ and Zn2+ in semi-aqueous system. The fluorescence of receptor 3 was enhanced and quenched, respectively, with the addition of Zn2+ and Cu2+ ions over other surveyed cations. The receptor formed host-guest complexes in 1:1 stoichiometry with the detection limit of 5 nM and 15 nM for Cu2+ and Zn2+ ions, respectively. Further, we have effectively utilized the two metal ions (Cu2+ and Zn2+) as chemical inputs for the manufacture of INHIBIT type logic gate at molecular level using the fluorescence responses of receptor 3 at 450 nm.  相似文献   

7.
A novel fluorometric sensor bearing three dansyl moieties based on tris[2-(2-aminoethylthio)ethyl]amine was prepared by a simple approach using a conventional two-step synthesis. The sensor exhibits highly Hg2+-selective ON-OFF fluorescence quenching behavior in aqueous acetonitrile solutions and is shown to discriminate various competing metal ions, particularly Cu2+, Ag+, and Pb2+ as well as Ca2+, Cd2+, Co2+, Fe3+, Mn2+, Na+, Ni2+, and Zn2+, with a detection limit of 1.15 × 10−7 M or 23 ppb.  相似文献   

8.
Guo-Xi Liang 《Talanta》2010,80(5):2172-1633
The near-infrared (NIR)-emitting CdSeTe alloyed quantum dots (AQdots) that capped with l-cysteine were applied for ultrasensitive Cu2+ sensing. The sensing approach was based on the fluorescence of the AQdots selectively quenched in the presence of Cu2+. Experimental results showed a low interference response towards other metal ions. The possible quenching mechanism was discussed on the basis of the binding between l-cysteine and the metal ions. In addition, biomolecules have low effect on the fluorescence due to the minimized interferences in NIR region. The response of the NIR optical sensor was linearly proportional to the concentration of Cu2+ ranging from 2 × 10−8 to 2 × 10−6 mol L−1. Furthermore, it has been successfully applied to the detection of Cu2+ in vegetable samples.  相似文献   

9.
Yu C  Chen L  Zhang J  Li J  Liu P  Wang W  Yan B 《Talanta》2011,85(3):1627-1633
A novel Cu2+-specific “off-on” fluorescent chemosensor of naphthalimide modified rhodamine B (naphthalimide modified rhodamine B chemosensor, NRC) was designed and synthesized, based on the equilibrium between the spirolactam (non-fluorescence) and the ring-opened amide (fluorescence). The chemosensor NRC showed high Cu2+-selective fluorescence enhancement over commonly coexistent metal ions or anions in neutral aqueous media. The limit of detection (LOD) based on 3 × δblank/k was obtained as low as 0.18 μM of Cu2+, as well as an excellent linearity of 0.05-4.5 μM (R = 0.999), indicating the chemosensor of high sensitivity and wide quantitation range. And also the coordination mode with 1:1 stoichiometry was proposed between NRC and Cu2+. In addition, the effects of pH, co-existing metal ions and anions, and the reversibility were investigated in detail. It was also demonstrated that the NRC could be used as an excellent “off-on” fluorescent chemosensor for the measurement of Cu2+ in living cells with satisfying results, which further displayed its valuable applications in biological systems.  相似文献   

10.
An ion-selective bulk optode (ISBO) for sensing Cu2+ and Pb2+ ions based on plasticized poly(vinyl chloride) containing 1,10-dibenzyl-1,10-diaza-18-crown-6 (DBzDA18C6) as ionophore and 1-(2-pyridylazo)-2-naphthol (PAN) as chromoionophore was prepared. The effects of DBzDA18C6/PAN and NaTPB/PAN mole ratios on the response behavior of the ISBO were investigated. The ISBO membrane shows enhanced selectivities for Cu2+ (at 530 nm) and Pb2+ (at 467 nm) over alkali, alkaline earth and other transition metal ions. The optical selectivity coefficients were measured using the separate solution method (SSM) in the two corresponding wavelengths at pH=5. The detection limit for Cu2+ and Pb2+ are 3.2×10−7 and 1.0×10−8 M, respectively.  相似文献   

11.
In this article a new coated platinum Cu2+ ion selective electrode based on 2-((2-(2-(2-(2-hydroxy-5-methoxybenzylideneamino)phenyl)disufanyl)phenylimino) methyl)-4-methoxyphenol Schiff base (L1) as a new ionophore is described. This sensor has a wide linear range of concentration (1.2 × 10−7-1.0 × 10−1 mol L−1) and a low detection limit of 9.8 × 10−8 mol L−1of Cu(NO3)2. It has a Nernstian response with slope of 29.54 ± 1.62 mV decade−1 and it is applicable in the pH range of 4.0-6.0 without any divergence in potentioal. The coated electrode has a short response time of approximately 9 s and is stable at least for 3.5 months. The electrode shows a good selectivity for Cu2+ ion toward a wide variety of metal ions. The proposed sensor was successfully applied for the determination of Cu2+ ion in different real and environmental samples and as indicator electrode for potentiometric titration of Cu2+ ion with EDTA.  相似文献   

12.
An aqueous solution containing sodium polyacrylate(PAAS) was used in diffusive gradient in thin-films technique(DGT) to measure DGT-labile Ni2+ concentrations.The DGT devices(PAAS DGT) were validated in four types of solutions,including synthetic river water containing metal ions with complexing EDTA or that without complexing EDTA,natural river water(Ling River,Jinzhou,China) spiked with Ni2+,and an industrial wastewater (Jinzhou,China).Results show that only free metal ions were measured by PAAS DGT,recov...  相似文献   

13.
Hassan SS  Elnemma EM  Mohamed AH 《Talanta》2005,66(4):1034-1041
Two novel membrane sensors sensitive and reasonably selective for Cu2+ ions are described. These are based on the use of newly synthesized cyclic tetrapeptide derivatives as neutral ionophores and sodium tetraphenylborate (NaTPB) as an anionic excluder in plasticized PVC membranes. The sensors exhibit fast and stable near-Nernstian response over the concentration range 1.0 × 10−6 mol l−1 to 1.0 × 10−2 mol l−1 Cu2+ with a cationic slope of 30.2-25.9 mV per decade at pH 4.5-7 with a lower detection limit of 0.05-0.13 μg ml−1. Effects of plasticizers, lipophilic salts and various foreign common ions are tested. The sensors display long life-span, long term stability, high reproducibility, and short response time. Selectivity of both sensors is significantly high for Cu2+ over Fe3+, Al3+, Zn2+, Cd2+, Hg2+, Ni2+, Co2+, Mn2+, alkaline earth and alkali metal ions. The sensors are used for direct measurement of copper content in different rocks and industrial wastewater samples from electroplating factories. The results agree fairly well with data obtained using atomic absorption spectrometry.  相似文献   

14.
Rhodamine B hydroxylamide (1) is characterized as a highly selective and sensitive fluorescence probe for Cu2+. Under the optimized conditions, the probe exhibits specific absorbance-on and fluorescence-on responses to Cu2+ only. This remarkable property may allow Cu2+ to be detected directly in the presence of the other transition metal ions, and such an application has been demonstrated to human serum. The reaction mechanism is also investigated and proposed as that the hydroxylamide group of 1 binds Cu2+, and the subsequent complexation of Cu2+ displays a high catalytic activity for the hydrolytic cleavage of the amide bond, causing the release of fluorophore (rhodamine B) and thereby the retrievement of absorbance and fluorescence. The recovered fluorescence intensity is proportional to the concentration of Cu2+ in the range 1-20 μM. The detection limit for Cu2+ is 33 nM (k = 3). The reaction mechanism described here may be useful for developing excellent spectroscopic probes with cleavable active bonds for other analytes.  相似文献   

15.
Bis(pyrene) derivative of diazatetrathia-crown ether has been prepared and its Hg2+-selective fluoroionophoric properties were investigated. The compound showed a pronounced Hg2+-selectivity and other metal ions except for Cu2+ showed almost no discernible responses. The Hg2+-selectivity of the compound was also confirmed by the competitive experiments performed in the presence of physiologically important metal ions and the detection limit was found to be 1.6 × 10−6 M. The prominent selective and efficient fluorescence quenching behavior could be utilized as a new chemosensing system for the analysis of toxic Hg2+ ions in aqueous environment.  相似文献   

16.
A new rhodamine B derivative bearing a hydrazone group has been designed and prepared. The synthesized colorimetric and fluorescent molecular chemosensor can be used as a dual probe, selectively detecting Al3+ and Cu2+ in acetonitrile solution by monitoring changes in the absorption and fluorescence spectral patterns. The results show that Al3+ ions can induce a greater fluorescence enhancement, while the addition of Cu2+ ions induces a strong UV–vis absorption enhancement with weak fluorescence. The limits of detection of Cu2+ and Al3+ were estimated to be 2.9 × 10−7 M and 8.3 × 10−9 M, respectively.  相似文献   

17.
The technique of diffusive gradients in thin films (DGT) is a newly developed analytical technique capable of measuring in situ concentrations of trace metals in the environment. The technique employs a thin film diffusive hydrogel (with well-defined diffusion properties) in contact with a binding phase capable of binding metal ions of interest. In this work, we demonstrate, for the first time, the use of a commercially available solid ion exchange membrane (Whatman P81) as the binding phase in DGT analysis. The cellulose phosphate-based Whatman P81 membrane is a strong cation exchange membrane. Its performance characteristics as a new binding phase in DGT measurement of Cu2+ and Cd2+ were systematically investigated. Several advantages over the conventional ion exchange resin-embedded hydrogel binding phases used in DGT were observed including simple preparation, ease of handling, and reusability. The binding capacities of the material to various metal ions were examined both collectively and individually. The binding phase preferentially binds to transition metal ions rather than matrix ions such as potassium, sodium, calcium and magnesium, which are competitive species in natural waters. Within the optimum pH range (pH 4.0-9.0), the maximum non-competitive binding capacities of the membrane for Cu2+ and Cd2+ were 3.22 and 3.07 μmol cm−2, respectively. The suitability of the new membrane-based binding phase for DGT applications was validated experimentally. The experimental results demonstrated excellent agreement with theoretically predicted trends. The measurement was not degraded after four consecutive reuses of the cellulose phosphate binding phase.  相似文献   

18.
This work reports the preparation of new Cu2+ ion-imprinted polymeric nanoparticles using 1-hydroxy-4-(prop-2′-enyloxy)-9,10-anthraquinone (AQ) as a vinylated chelating agent. The Cu2+ ion found to form a stable 1:1 complex with AQ in methanol solution. The resulting Cu2+-AQ complex was copolymerized with ethyleneglycol dimethacrylate, as a cross-linking monomer, via precipitation polymerization method. The imprint copper ion was removed from the polymeric matrix using a 0.1 mol L−1 HNO3 solution. The Cu2+-imprinted polymeric nanoparticles were characterized by IR spectroscopy, scanning electron microscopy (SEM) and N2 adsorption-desorption isotherms. The SEM micrographs showed colloidal nanoparticles of 60-100 nm in diameter and slightly irregular in shape. Optimum pH for maximum sorption was 7.0. Sorption and desorption of Cu2+ ion on the IIP nanoparticles were quite fast and achieved completely over entire investigated time periods of 2-30 min. Maximum sorbent capacity and enrichment factor of the prepared IIP for Cu2+ were 73.8 μmol g−1 and 56.5, respectively. The relative standard deviation and limit of detection (CLOD = 3Sb/m) of the method were evaluated as 2.6% and 0.1 ng mL−1, using inductively coupled plasma-atomic emission spectrometry, respectively. It was found that the imprinting technology results in increased affinity of the prepared material toward Cu2+ ion over other metal ions with the same charge and close ionic radius. The relative standard deviations for six and twenty replicates with the same nanoparticles were found to be 1.7% and 2.1%, respectively.  相似文献   

19.
Five metal-bridged biferrocene complexes of the Schiff-base ligand (HL = S-benzyl-N-(ferrocenyl-1-methyl-methylidene)dithiocarbazate) have been studied by single crystal X-ray diffraction and 57Fe Mössbauer spectroscopy. The crystal structures of the complexes show that the central metal ions are tetra-coordinated by two ligands in two modes: the central d8 transition metal ions (Ni2+, Pd2+, and Pt2+) are nearly square-planar coordinated and the d10 transition metal ions (Zn2+ and Cd2+) are tetrahedrally coordinated. Interestingly, the isomer shifts in 57Fe Mössbauer spectroscopy are also of two kinds: d8 transition metal ions (0.097-0.247 mm/s) and d10 transition metal ions (0.416-0.435 mm/s).  相似文献   

20.
Azo 8-hydroxyquinoline benzoate (2) was synthesized and studied to detect metal ions. Distinct color change was found for compound 2 in the presence of transition metal ions Hg2+ or Cu2+ in CH3CN, respectively, which makes it possible for distinguishing Hg2+ and Cu2+ from other metal ions by the ‘naked eye’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号