首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Rosi Ketrin Katarina 《Talanta》2009,78(3):1043-990
On-line preconcentration and determination of transition and rare-earth metals in water samples was performed using a Multi-Auto-Pret system coupled with inductively coupled plasma-atomic emission spectrometry (ICP-AES). The Multi-Auto-Pret AES system proposed here consists of three Auto-Pret systems with mini-columns that can be used for the preconcentration of trace metals sequentially or simultaneously, and can reduce analysis time to one-third and running cost of argon gas and labor. A newly synthesized chelating resin, ethylenediamine-N,N,N′-triacetate-type chitosan (EDTriA-type chitosan), was employed in the Multi-Auto-Pret system for the collection of trace metals prior to their measurement by ICP-AES. The proposed resin showed very good adsorption ability for transition and rare-earth metal ions without any interference from alkali and alkaline-earth metal ions in an acidic media. For the best result, pH 5 was adopted for the collection of metal ions. Only 5 mL of samples could be used for the determination of transition metals, while 20 mL of samples was necessary for the determination of rare-earth metals. Metal ions adsorbed on the resin were eluted using 1.5 M nitric acid, and were measured by ICP-AES. The proposed method was evaluated by the analysis of SLRS-4 river water reference materials for trace metals. Good agreement with certified and reference values was obtained for most of the metals examined; it indicates that the proposed method using the newly synthesized resin could be favorably used for the determination of transition and rare-earth metals in water samples by ICP-AES.  相似文献   

2.
On-line preconcentration system for the selective, sensitive and simultaneous determination of chromium species was investigated. Dual mini-columns containing chelating resin were utilized for the speciation and preconcentration of Cr(III) and Cr(VI) in water samples. In this system, Cr(III) was collected on first column packed with iminodiacetate resin. Cr(VI) in the effluent from the first column was reduced to Cr(III), which was collected on the second column packed with iminodiacetate resin. Hydroxyammonium chloride was examined as a potential reducing agent for Cr(VI) to Cr(III).The effects of pH, sample flow rate, column length, and interfering ions on the recoveries of Cr(III) were carefully studied. Five millilitres of a sample solution was introduced into the system. The collected species were then sequentially washed by 1 M ammonium acetate, eluted by 2 M nitric acid and measured by ICP-AES. The detection limit for Cr(III) and Cr(VI) was 0.08 and 0.15 μg l−1, respectively. The total analysis time was about 9.4 min.The developed method was successfully applied to the speciation of chromium in river, tap water and wastewater samples with satisfied results.  相似文献   

3.
A new chelating resin using chitosan as a base material was synthesized. Functional moiety of 2-amino-5-hydroxy benzoic acid (AHBA) was chemically bonded to the amino group of cross-linked chitosan (CCTS) through the arm of chloromethyloxirane (CCTS-AHBA resin). Several elements, such as Ag, Be, Cd, Co, Cu, Ni, Pb, U, V, and rare earth elements (REEs), could be adsorbed on the resin. To use the resin for on-line pretreatment, the resin was packed in a mini-column and installed into a sequential-injection/automated pretreatment system (Auto-Pret System) coupled with inductively coupled plasma-atomic emission spectrometry (ICP-AES). The sequential-injection/automated pretreatment system was a laboratory-assembled, and the program was written using Visual Basic software. This system can provide easy operation procedures, less reagent consumption, as well as less waste production.

Experimental variables considered as effective factors in the improvement sensitivity, such as an eluent concentration, a sample and an eluent flow rate, pH of samples, and air-sandwiched eluent were carefully optimized. The proposed system provides excellent on-line collection efficiency, as well as high concentration factors of analytes in water samples, which results in highly sensitive detection of ultra-trace and trace analysis. Under the optimal conditions, the detection limits of 24 elements examined are in the range from ppt to sub-ppb levels. The proposed method was validated by using the standard reference material of a river water, SLRS-4, and the applicability was further demonstrated to the on-line collection/concentration of trace elements, such as Ag, Be, Cd, Co, Cu, Ni, Pb, U, V, and REEs in water samples.  相似文献   


4.
A novel chelating resin functionalized with serine diacetic acid moiety was synthesized by using chitosan as base material, and applied to the collection/concentration of trace elements in environmental water samples, followed by the determination using inductively coupled plasma-atomic emission spectrometer (ICP-AES). The synthesized resin, crosslinked chitosan serine diacetic acid (CCTS-SDA), showed good adsorption behavior toward trace amounts of Cd, Pb, Cu, Ni, V, Ga, Sc, In, and Th in a wide pH range. Additionally, rare earth elements also can be retained on the resin at neutral pH region. The adsorbed elements can be easily eluted with 1 mol L−1 of nitric acid, and their recoveries were found to be 90-100%. The CCTS-SDA was packed in a mini-column, which was then installed in a computer-controlled auto-pretreatment system (Auto-Pret System) for on-line trace elements collection and determination with ICP-AES. Experimental parameters which related to the improvement of sensitivity and reproducibility were optimized. The limits of detection (LOD) for 13 elements were found to be in sub-ppb level. The proposed method with CCTS-SDA resin was successfully applied to the determination of trace elements in river water samples. The method was validated by determining a certified reference material of river water, SLRS-4.  相似文献   

5.
This paper reports the development of a new methodology for the determination of cobalt in biological samples by using a flow injection system with loaded DPTH-gel as solid phase to preconcentrate analytes. The procedure is based on the on-line preconcentration of cobalt on a microcolumn of 1,5-bis(di-2-pyridyl)methylene thiocarbohydrazide immobilized on silica gel (DPTH-gel). The trapped cobalt is then eluted with 1% tartaric acid and 1% citric acid (7.1 mL) and determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). The analytical figures of merit for the determination of cobalt are as follows: detection limit (3S), 8.5 ng mL–1; precision (RSD), 5.8% for 100 ng mL–1 of cobalt; enrichment factor, 13 (using 7.3 mL of sample); sampling frequency, 40 h–1 using a 60-s preconcentration time. For a 120-s preconcentration time (14.6 mL of sample volume) a detection limit of 5.7 ng mL–1, an RSD under 5% at 50 ng mL–1, an enrichment factor of 25, and a sampling frequency of 24 h–1 were reported. The precision and accuracy of the method were checked by analysis of biological certified reference materials.  相似文献   

6.
A novel automated off-line preconcentration system for trace metals (Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb) in seawater was developed by improving a commercially available solid-phase extraction system SPE-100 (Hiranuma Sangyo). The utilized chelating resin was NOBIAS Chelate-PA1 (Hitachi High-Technologies) with ethylenediaminetriacetic acid and iminodiacetic acid functional groups. Parts of the 8-way valve made of alumina and zirconia in the original SPE-100 system were replaced with parts made of polychlorotrifluoroethylene in order to reduce contamination of trace metals. The eluent pass was altered for the back flush elution of trace metals. We optimized the cleaning procedures for the chelating resin column and flow lines of the preconcentration system, and developed a preconcentration procedure, which required less labor and led to a superior performance compared to manual preconcentration (Sohrin et al. [5]). The nine trace metals were simultaneously and quantitatively preconcentrated from ∼120 g of seawater, eluted with ∼15 g of 1 M HNO3, and determined by HR-ICP-MS using the calibration curve method. The single-step preconcentration removed more than 99.998% of Na, K, Mg, Ca, and Sr from seawater. The procedural blanks and detection limits were lower than the lowest concentrations in seawater for Mn, Ni, Cu, and Pb, while they were as low as the lowest concentrations in seawater for Al, Fe, Co, Zn, and Cd. The accuracy and precision of this method were confirmed by the analysis of reference seawater samples (CASS-5, NASS-5, GEOTRACES GS, and GD) and seawater samples for vertical distribution in the western North Pacific Ocean.  相似文献   

7.
Guo Y  Din B  Liu Y  Chang X  Meng S  Liu J 《Talanta》2004,62(1):207-213
2-Aminoacetylthiophenol (AATP)-modified Amberlite XAD-2 has been synthesized by coupling it through NNNH group. The resulting chelating resin, characterized by elemental analysis, thermogravimetric analysis (TGA) and infrared (IR) spectra, was used to preconcentrate Cd, Hg, Ag, Ni, Co, Cu and Zn ions. Several parameters, such as distribution coefficient and sorption capacity of the chelating resin, pH and flow rates of uptake and striping, volume of sample and eluent, were evaluated. The effects of electrolytes and cations on the preconcentration were also investigated. The recoveries were >96%. The procedure was validated by standard addition and analysis of a standard reference sediment material (GBW 07309 China). The developed method was utilized for preconcentration and determination of Cd, Hg, Ag, Ni, Co, Cu and Zn in tap water, river water and sediment samples by inductively coupled plasma-atomic emission spectrometry (ICP-AES) with satisfactory results. The 3σ detection limits for Cd, Hg, Ag, Ni, Co, Cu and Zn were found to be 0.10, 0.23, 0.41, 0.13, 0.25, 0.39 and 0.58 μg l−1, respectively. The relative standard deviation of the determination was <10%.  相似文献   

8.
In this work, two kinds of chelating resin, bis(2-aminoethylthio)methylated resin (BAETM) and γ-aminobutyrohydroxamate resin (γ-ABHX) were synthesized. Of these, the former has a hydrophobic skeleton, and the latter a hydrophilic skeleton. The functionalities of each were 0.91 and 2.21 mmol g−1, respectively. The chelating behavior of these resins towards vanadium, molybdenum and tungsten as a function of pH was studied. To perform trace metals analysis in complex matrices, a hyphenated method-chelation ion chromatography (CIC) coupled on-line detection with inductively coupled plasma mass spectrometry (ICP-MS) was developed. With a BAETM resin column (5×0.4 cm i.d.) as the separator, a sample volume of 20 μl, nitric acid (pH 1.5) as the eluent and a flow rate of 1 ml min−1, the detection limits for the determination of vanadium, molybdenum and tungsten were lower than 0.05 ng ml−1and the linear ranges were up to 100 ng ml−1 for each element. By increasing the injected sample volume to 250 μl, the resin concentrator improved the detection limit to 0.01 ng ml−1. For the determination of these elements (5 ng ml−1 for each) spiked in artificial sea water samples, γ-ABHX resin column (3×0.6 cm i.d.) demonstrated well resolved peak separation between the analytes and the matrix elements—calcium and magnesium, by using sodium nitrate (10 ml, 10−4 M) as the eliminator.  相似文献   

9.
The microwave-assisted acid-digestion for the determination of metals in coal by ICP-AES was investigated, especially focusing on the necessity of adding HF. By testing five certified reference materials, BCR-180, BCR-040, NIST-1632b, NIST-1632c, and SARM-20, it was found that the two-stage digestion without HF (HNO3 + H2O2 was used) was very effective for the pretreatment of ICP-AES measurement. Both major metals (Al, Ca, Fe, and Mg) and minor or trace metals (Co, Cr, Cu, Mn, Ni, Pb, and Zn) in coal gave good recoveries for their certified or reference values. The possibility of ‘HF-memory effect’ was cancelled by the use of a set of vessels which had been never contacted with HF. Twenty-four Japanese standard coals (SS coals) were analyzed by the present method, and the concentrations of major metals measured by the present method provided very high accordance with those from the authentic JIS (Japanese Industrial Standard) method.  相似文献   

10.
A method for determining Au, Pt, Pd, Ir and Rh in ores and silicates and Fe-formation rocks is described. Sample decomposition was carried out with aqua regia and HF, followed by fusion of any insoluble residue with Na22O2 in a glassycarbon crucible. The precious metals were separated, in 1.2 mol dm−3 HCl media, from the matrix elements by ion-exchange, using a mini-column with tetraethylenepentamine (metalfix-chelamine) resin. The resin was destroyed with HNO3 and H2O2 in a high-pressure vessel assisted by microwave heating, and the precious elements were determined by flow-injection inductively coupled plasma mass spectrometry. The sample treatment, optimization of analytical variables and measurable concentration levels are discussed. The limits of quantification (10 sdn − 1) calculated from a procedural blank sample solution were 4.0, 2.0, 1.5, 0.8 and 0.5 ng g−1 for Au, Pt, Pd, Ir and Rh, respectively. The accuracy of the proposed method was tested by determining these elements in SARM 7 platinum-ore reference material. For all the analytes, the relative standard deviation of the combined dissolution, separation and determination methods was below 3.5% (n = 6).  相似文献   

11.
A new on-line cloud point extraction (CPE) system coupled to ICP-OES was designed for simultaneous extraction, preconcentration and determination of Cd2+, Co2+, Cr3+, Cu2+, Fe3+ and Mn2+ ions in water samples. This is based on the complexation of the metal ions with 1-(2-thenoyl)-3,3,3-trifluoraceton reagent (TTA) at pH 6.0 in the presence of non-ionic surfactant of Triton X-114. The micellar solution was heated above 60 °C and loaded through a column packed with cotton, which acts as a filter for retaining the analyte-entrapped surfactant-rich phase. Then the surfactant-rich phase was eluted using propanol:0.5 mol L−1 nitric acid solution (75:25, v/v) at a flow rate of 3.0 mL min−1 and directly introduced into the nebulizer of the ICP-OES. Several factors influencing the instrumental conditions and extraction were evaluated and optimized. Under the optimum conditions, the enhancement factors of the proposed method for target ions were between 42 and 97, the detection limits (DLs) were in the range of 0.1-2.2 μg L−1. The relative standard deviations (R.S.D.s) at 100 μg L−1 concentration levels of each ion were found to be less than 4.6%. Also, the calibration graphs were linear in the range of 0.5-100 μg L−1 with the correlation coefficients within the range of 0.9948-0.9994.Finally, the developed method was successfully applied to the extraction and determination of the mentioned metal ions in the tap, well, sea and mineral water samples and satisfactory results were obtained.  相似文献   

12.
Muzikar M  Fontàs C  Hidalgo M  Havel J  Salvadó V 《Talanta》2006,70(5):1081-1086
A new matrix separation/preconcentration method is developed for the on-line determination of palladium(II) and platinum(IV) in complex matrices using a sequential ICP-OES instrument. These metals are preconcentrated in a microcolumn packed with Metalfix-Chelamine, a polymeric functionalised resin containing the tetraethylenepentamine group. The hydrodynamic and chemical conditions of the flow system affecting the loading and elution steps are optimised off-line using a mixture of 1.0 mol L−1 thiourea and 2.0 mol L−1 NaClO4 in 4.0 mol L−1 HCl which proved to be the most effective solution for the simultaneous elution of Pd(II) and Pt(IV). High enrichment factors of nearly 35 are achieved for both metals and the detection limits (LOD) are 22 ng L−1 for platinum and 2.5 ng L−1 for palladium. The accuracy of the method was tested by analysing a used pellet catalyst (certified reference material NIST 2556) and trace metal solutions resulting from the leaching of this material. Despite the fact that this CRM contains zirconium and large amounts of aluminium and lead, a high level of agreement was achieved demonstrating the efficiency of the resin in eliminating interfering elements.  相似文献   

13.
A new method using a microcolumn packed with nanometer TiO2 as solid-phase extractant has been developed for the simultaneous preconcentration of trace amounts of Cu, Mn, Cr and Ni prior to their measurements by inductively coupled plasma atomic emission spectrometry (ICP-AES). Effects of pH, sample flow rate and volume, elution solution and interfering ions on the recovery of the analytes have been investigated. The adsorption capacity of nanometer TiO2 was found as 0.108, 0.149, 0.039 and 0.034 mmol g−1 for Cu, Cr, Mn and Ni, respectively. The separation of analytes can be achieved from water samples with a concentration factor of 50 times. The method has been applied for the determination of trace elements in biological sample and lake water with satisfactory results.  相似文献   

14.
Pohl P  Prusisz B  Zyrnicki W 《Talanta》2005,67(1):155-161
Metalfix Chelamine chelating resins of two different bead sizes (150-300 and 40-80 μm) were examined and compared regarding their application for sorption of Au, Ir, Pd, Pt, Rh and Ru ions from medium of HCl, HNO3 and mixtures of HCl and HNO3. The quantitative enrichment of Au, Ir, Pd and Pt was established for the resin of 150-300 μm particle size and for solutions acidified with HCl and HNO3 (3:1) up to the concentration of 0.50 mol l−1. In the case of Rh and Ru, the uptake of these metals by the resin was lower than 50%. For the elution, solutions of different reagents, i.e. HCl, HNO3, KCN, KI, KSCN and (NH2)2CS, were studied with respect to the complete release of the analytes retained by the resin. In addition, influence of various base metals, i.e. Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn, on the retention of the noble metals was investigated. Under the selected conditions for the retention and elution of Au, Ir, Pd and Pt, the analytical performance of the proposed pre-concentration procedure was evaluated and it was applied to the determination of these noble metals in anodic sludge sample.  相似文献   

15.
An ion-exchange procedure is proposed for determination of Pt and Pd in environmental samples, using a Dowex 1-X10 anion-exchange resin. Pt and Pd were separated from the matrix elements in the sample by selective retention on the column as anionic chloro complexes and subsequent elution by circulated thiourea at 60 °C. The eluent, containing Pt and Pd was analyzed by inductively coupled plasma (ICP) atomic emission spectrometry (AES). Average recoveries of 98% and detection limit of 15 ng/g for both metals were achieved. Analysis of Pt and Pd concentrations in road dust, sampled from several sites in Germany was performed. The comparison of the obtained data with the concentrations of Pt and Pd in the same samples, determined by ICP-MS showed a very good agreement.  相似文献   

16.
A novel continuous-flow system for the dynamic extraction of water soluble metal fractions in airborne particulate matter (APM) with subsequent inductively coupled plasma optical emission spectrometric (ICP-OES) analysis of derived extracts is presented. The fully automated extraction system with on-line multi-element detection offers enhanced sensitivity when compared to batch-wise counterparts; additionally it provides information about the extraction process. With the developed procedure detection limits in the order of 1.5 (Ba) to 8.0 (Ni) ng extractable mass per investigated sample could be achieved, which translates to method detection limits for soluble metal concentrations in APM ranging from 0.2 ng m−3 (Ba) to 0.9 ng m−3 (Fe). Reproducibility of analysis was determined by replicate measurement (n = 6) of an APM sample with an aerodynamic diameter ≤10 μm (PM10), derived results varied between 3.5% (Mn) and 12.1% (Ni) relative standard deviation. Method validation was accomplished by comparison of extracted soluble and remaining non-soluble fractions with the total metal contents of the investigated PM10 samples, showing an excellent mass balance for all elements. Application of the developed procedure for the analysis of water soluble metal fractions in PM10 samples (n = 16) from Linz (Austria) indicated a high variability of extractable fractions ranging from 11.7 ± 7.2% (Fe) to 48.8 ± 15.4% (Mn) of the total metal contents.  相似文献   

17.
D. Point  G. Bareille  C. Belin 《Talanta》2007,72(3):1207-1216
An integrated approach for the accurate determination of total, labile and organically bound dissolved trace metal concentration in the field is presented. Two independent automated platforms consisting of an ultraviolet (UV) on-line unit and a chelation/preconcentration/matrix elimination module were specifically developed to process samples on-site to avoid sample storage prior to inductively coupled plasma mass spectrometry (ICP-MS) analysis. The speciation scheme allowed simultaneous discrimination between labile and organic stable dissolved species of seven trace elements including Cd, Cu, Mn, Ni, Pb, U and Zn, using only 5 ml of sample with detection limits ranging between 0.6 ng l−1 for Cd and 33 ng l−1 for Ni. The influence of UV photolysis on organic matter and its associated metal complexes was investigated by fluorescence spectroscopy and validated against natural samples spiked with humic substances standards. The chelation/preconcentration/matrix elimination procedure was validated against an artificial seawater spiked sample and two certified reference materials (SLRS-4 and CASS-4) to ensure homogenous performance across freshwater, estuarine and seawater samples. The speciation scheme was applied to two natural freshwater and seawater samples collected in the Adour Estuary (Southwestern, France) and processed in the field. The results indicated that the organic complexation levels were high and unchanged for Cu in both samples, whereas different signatures were observed for Cd, Mn, Ni, Pb, U and Zn, suggesting organic ligands of different origin and/or their transformation/alteration along estuarine water mixing.  相似文献   

18.
A system for on-line preconcentration and determination of platinum by ultrasonic nebulization (USN) coupled to inductively coupled plasma optical emission spectrometry (ICP-OES) was studied. It is based on the chemical sorption of platinum on a column packed with polyurethane foam loaded with thiocyanate reagent. The optimization step was carried out using two level full factorial design. Three variables (pH, loading flow rate (LFR) and eluent concentration) were regarded as factors in the optimization. Results of the two level factorial design 23 with three replicates of the central point for platinum preconcentration, based on the variance analysis (ANOVA), demonstrated that the factors and their interactions are not statistically significant. The proposed procedure allowed the determination of platinum with a detection limit of 0.28 μg l−1. The precision for 10 replicate determinations at 10.0 μg l−1 Pt level was 3.8% relative standard deviation (R.S.D.), calculated from the peak heights obtained. A total enhancement factor of 100 was obtained with respect to ICP-OES using pneumatic nebulization (10 for USN and 10 for preconcentration). A sampling frequency of 50 samples per hour was obtained. The effect of other ions in concentrations agreeing with water samples was studied. The addition/recovery experiments in the samples analyzed demonstrated the accuracy and applicability of the system developed for platinum determination in spiked water samples.  相似文献   

19.
Wu Y  Jiang Z  Hu B  Duan J 《Talanta》2004,63(3):585-592
A new method for determination of trace gold (Au), palladium (Pd), and platinum (Pt) in environmental and geological samples by electrothermal vaporization (ETV)-inductively coupled plasma atomic emission spectrometry (ICP-AES) with the use of chelating resin YPA4 as both solid phase extractant and chemical modifier has been developed. The resin loaded with analytes was prepared to slurry and directly introduced into the graphite furnace without any pretreatment. The factors affecting the vaporization behaviors of Au, Pd, and Pt were investigated in detail. It was found that, in the presence of YPA4, Au and Pd could be quantitatively vaporized at lower vaporization temperature of 1900 °C. Compared with the conventional electrothermal vaporization, the vaporization temperature was decreased by 700 °C, and the detection limits for Au and Pd was decreased by a three-fold. However, a little effect of YPA4 on the ETV-ICP-AES determination of Pt was found. Under the optimized conditions, the detection limits (3σ) of Au, Pd, and Pt for this method are 75, 60, and 217 pg, respectively; and their relative standard deviations (R.S.D.) are 4.4, 5.6, and 3.7%, respectively (n=9, C=0.2 μg ml−1). The proposed method has been applied to the determination of trace Pd and Pt in sewage sludge, and the results well agreed with the recommended values. In order to further verify the accuracy of the developed method, a GBW07293 certified geological reference material and an auto catalyst NIST SRM 2557 reference material were analyzed, and the determined values coincided with the certified values very well.  相似文献   

20.
A flow injection (FI) on-line preconcentration procedure by using a nanometer-sized alumina packed micro-column coupled to inductively coupled plasma mass spectrometry (ICP-MS) was described for simultaneous determination of trace metals (V, Cr, Mn, Co, Ni, Cu, Zn, Cd and Pb) in the environmental samples. The effects of pH value, sample flow rate, preconcentration time, and interfering ions on the preconcentration of analytes have been investigated. Under the optimized operating conditions, the adsorption capacity of the nanometer-sized alumina for V, Cr, Mn, Co, Ni, Cu, Zn, Cd and Pb were found to be 11.7, 13.6, 15.7, 9.5, 12.2, 13.3, 17.1, 17.7 and 17.5 mg g−1, respectively. With 60 s preconcentration time and 60 s elution time, an enrichment factor of 5 and the sampling frequency of 15 h−1 were obtained. The proposed method has been applied to the determination of trace metals in environmental certified reference materials and natural water samples with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号