首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhang L  Li W  Shi M  Kong J 《Talanta》2006,70(2):432-436
A novel film modified electrode for the determination of trace lead was developed in this work. The modified electrode was prepared by the electropolymerization of N,N′-(o-phenylene)-bis-benzenesulfonamide (PBSA) as the ion capturing reagent to create the functional film. The modified electrode shows a high selectivity towards Pb2+ over interfering cations, e.g. Cu2+, Cd2+, Co2+, Ni2+, Zn2+, Cr2+, and the calibration curve was linear in the concentration range of 2.0 × 10−9 to 1.0 × 10−7 M with correlation coefficient of 0.999. For 20 min accumulation, detection limit of 1.0 × 10−9 M was obtained at the signal to noise ratio of 3. Analytical availability of the modified electrode was demonstrated by the application for samples from pond water.  相似文献   

2.
An all-solid-state polymeric membrane Pb2+ ion-selective electrode (Pb2+-ISE) based on bimodal pore C60 (BP-C60) as solid contact has been developed. A BP-C60 film can be readily formed on the surface of a glassy carbon electrode by electrochemical deposition. Cyclic voltammetry and electrochemical impedance spectroscopy have been employed to characterize the BP-C60 film. The large double layer capacitance and fast charge-transfer capability make BP-C60 favorable to be used as solid contact for developing all-solid-state ISEs. The all-solid-state BP-C60-based Pb2+-ISE shows a Nernstian response in the range from 1.0 × 10−9 to 1.0 × 10−3 M with a detection limit of 5.0 × 10−10 M. The membrane electrode not only displays an excellent potential stability with the absence of a water layer between the ion-selective membrane and the underlying BP-C60 solid contact, but also is insensitive to interferences from O2, CO2 and light. The proposed solid-contact Pb2+-ISE has been applied to determine Pb2+ in real water samples and the results agree well with those obtained by anodic stripping voltammetry.  相似文献   

3.
A novel selective membrane electrode for determination of ultra-trace amount of lead was prepared. The PVC membrane containing N,N′-dimethylcyanodiaza-18-cown-6 (DMCDA18C6) directly coated on a graphite electrode, exhibits a Nernstian response for Pb2+ ions over a very wide concentration range (from 1.0×10−2 to 1.0×10−7 M) with a limit of detection of 7.0×10−8 M (∼14.5 ppb). It has a fast response time of ∼10 s and can be used for at least 2 months without any major deviation in potential. The electrode revealed very good selectivity with respect to all common alkali, alkaline earth, transition and heavy metal ions. The proposed sensor was used as an indicator electrode in potentiometric titration of lead ions and in determination of lead in edible oil, human hair and water samples. The proposed sensor was found to be superior to the best Pb2+-selective electrodes reported in terms of detection limit and selectivity coefficient.  相似文献   

4.
The present paper has focused on the potential application of the bifunctional polydopamine@Fe3O4 core–shell nanoparticles for development of a simple, stable and highly selective electrochemical method for metal ions monitoring in real samples. The electrochemical method is based on electrochemical preconcentration/reduction of metal ions onto a polydopamine@Fe3O4 modified magnetic glassy carbon electrode at −1.1 V (versus SCE) in 0.1 M pH 5.0 acetate solution containing Pb2+ and Cd2+ during 160 s, followed by subsequent anodic stripping. The proposed method has been demonstrated highly selective and sensitive detection of Pb2+ and Cd2+, with the calculated detection limits of 1.4 × 10−11 M and 9.2 × 10−11 M. Under the optimized conditions, the square wave anodic stripping voltammetry response of the modified electrode to Pb2+ (or Cd2+) shows a linear concentration range of 5.0–600 nM (or 20–590 nM) with a correlation coefficient of 0.997 (or 0.994). Further, the proposed method has been performed to successfully detect Pb2+ and Cd2+ in aqueous effluent.  相似文献   

5.
This study presents the development of an original electrode, employing 6-methy-4-{[1-(1H-pyrrol-2-yl)methylidene]amino}-3-thioxo-3,4dihydro-1,2,4-triazin-5(2H)-one (PMTO) as a suitable ionophore. Interestingly, the electrode performance provided a very good response for Yb3+ in a wide concentration range (from 1.0 × 10−6 to 1.0 × 10−1 mol L−1) with a detection limit of 4.6 × 10−7 mol L−1 and a slope of 19.5 ± 0.3 mV per decade of Yb3+ concentration. Furthermore, it possessed a fast response time of about 10 s and it functioned in the pH range of 3.3-8.0 with a usage of at least 2 months without observing any deviations. Noticeably, the proposed electrode revealed an excellent selectivity for Yb3+ over a broad variety of alkali, alkaline earth, transition and heavy metal ions. The practical applicability of the electrode was demonstrated by its utilization as an indicator electrode in the potentiometric titration of Yb3+ ions with EDTA and in the determination of F in mouth wash samples. Additionally, it was also applied for the determination of Yb3+ ions in binary mixtures.  相似文献   

6.
A sensitive optode consisting of highly lead-selective ionophore (Lead IV), proton-selective chromoionophore (ETH 5294) and lipophilic anionic sites (KTpClPB) in plasticized polyvinyl chloride (PVC) membrane was fabricated. The optode membranes were used for determination of Pb2+ by absorption spectrophotometry in batch and flow-through systems. The influence parameters such as pH, type of buffer solution, response time and concentration of regenerating solution were optimized. The membrane responded to Pb2+ by changing its color from blue to pinkish purple in Tris buffer containing different concentration of Pb2+ at pH 7.0. The optode provided the response range of 3.16 × 10−8 to 5.00 × 10−5 mol L−1 Pb2+ with the detection limit of 2.49 × 10−8 mol L−1 in the batch system within the response time of 30 min. The dynamic range of 1.26 × 10−8 to 3.16 × 10−5 mol L−1 Pb2+ with detection limit of 8.97 × 10−9 mol L−1 were obtained in the flow-through system within the response time of 15 min. Moreover, the proposed optode sensors showed good selectivity towards Pb2+ over Na+, K+, Mg2+, Cd2+, Hg2+ and Ag+. It was successfully applied to determine Pb2+ in real water samples and the results were compared with well-established inductively coupled plasma optical emission spectrometry (ICP-OES). No significant different value (tcritical = 4.30 > texp = 1.00-3.42, n = 3 at 95% of confidence level) was found.  相似文献   

7.
An electrochemiluminescence (ECL) biosensor for simultaneous detection of adenosine and thrombin in one sample based on bifunctional aptamer and N-(aminobutyl)-N-(ethylisoluminol) functionalized gold nanoparticles (ABEI-AuNPs) was developed. A streptavidin coated gold nanoparticles modified electrode was utilized to immobilize biotinylated bifunctional aptamer (ATA), which consisted of adenosine and thrombin aptamer. The ATA performed as recognition element of capture probe. For adenosine detection, ABEI-AuNPs labeled hybridization probe with a partial complementary sequence of ATA reacted with ATA, leading to a strong ECL response of N-(aminobutyl)-N-(ethylisoluminol) enriched on ABEI-AuNPs. After recognition of adenosine, the hybridization probe was displaced by adenosine and ECL signal declined. The decrease of ECL signal was in proportion to the concentration of adenosine over the range of 5.0 × 10−12–5.0 × 10−9 M with a detection limit of 2.2 × 10−12 M. For thrombin detection, thrombin was assembled on ATA modified electrode via aptamer–target recognition, another aptamer of thrombin tagged with ABEI-AuNPs was bounded to another reactive site of thrombin, producing ECL signals. The ECL intensity was linearly with the concentration of thrombin from 5 × 10−14 M to 5 × 10−10 M with a detection limit of 1.2 × 10−14 M. In the ECL biosensor, adenosine and thrombin can be detected when they coexisted in one sample and a multi-analytes assay was established. The sensitivity of the present biosensor is superior to most available aptasensors for adenosine and thrombin. The biosensor also showed good selectivity towards the targets. Being challenged in real plasma sample, the biosensor was confirmed to be a good prospect for multi-analytes assay of small molecules and proteins in biological samples.  相似文献   

8.
9.
A multi-wall carbon nanotube (MWNT) modified glassy carbon electrode (GCE) was described for the simultaneous determination of trace levels of cadmium and lead by anodic stripping voltammetry (ASV). In pH 4.5 NaAc-HAc buffer containing 0.02 mol/l KI, Cd2+ and Pb2+ first adsorb onto the surface of a MWNT film coated GCE and then reduce at −1.20 V. During the positive potential sweep, reduced cadmium and lead were oxidized, and two well-defined stripping peaks appeared at −0.88 and −0.62 V. Compared with a bare GCE, a MWNT film coated GCE greatly improves the sensitivity of determining cadmium and lead. Low concentration of I significantly enhances the stripping peak currents since it induces Cd2+ and Pb2+ to adsorb at the electrode surface. The striping peak currents change linearly with the concentration of Cd2+ from 2.5×10−8 to 1×10−5 mol/l and with that of Pb2+ from 2×10−8 to 1×10−5 mol/l. The lowest detectable concentrations of Cd2+ and Pb2+ are estimated to be 6×10−9 and 4×10−9 mol/l, respectively. The high sensitivity, selectivity, and stability of this MWNT film coated electrode demonstrated its practical application for a simple, rapid and economical determination of trace levels of Cd2+ and Pb2+ in water samples.  相似文献   

10.
Comparative studies of the potentiometric behavior of three mercapto compounds [2-((5-mercapto-1,3,4-thiadiazol-2-ylimino)methyl)phenol] (MTMP), [5-(2-methoxy benzylidene amino)-1,3,4-thiadiazole-2-thiol] (MBYT) and [5-(pyridin-2-ylmethyleneamino)-1,3,4-thiadiazole-2-thiol] (PYTT) self-assembled on gold nanoparticles (GNPs) as ionophores in carbon paste electrodes (CPEs) have been made. These mercapto thiadiazole compounds were self-assembled onto gold nanoparticles and then incorporated within carbon paste electrode. The self-assembled ionophores exhibit a high selectivity for copper ion (Cu2+), in which the sulfur and nitrogen atoms in their structure play a role as the effective coordination donor site for the copper ion. These carbon paste electrodes were applied as indicator electrodes for potentiometric determination of copper ions. The sensor based on PYTT exhibits the working concentration range of 4.0 × 10−9 to 7.0 × 10−2 M and a Nernstian slope of 28.7 ± 0.3 mV decade−1 of copper activity. The detection limit of electrode was 1.0 × 10−9 M and potential response was pH independent across the range of 3.0-6.5. It exhibited a quick response time of <5 s and could be used for a period of 45 days. The ion selectivity of this electrode for Cu2+ was over 104 times that for other metal cations. The application of prepared sensors has been demonstrated for the determination of copper ions in spiked water and natural water samples.  相似文献   

11.
In-channel indirect amperometric detection mode for microchip capillary electrophoresis with positive separation electric field is successfully applied to some heavy metal ions. The influences of separation voltage, detection potential, the concentration and pH value of running buffer on the response of the detector have been investigated. An optimized condition of 1200 V separation voltage, −0.1 V detection potential, 20 mM (pH 4.46) running buffer of 2-(N-morpholino)ethanesulfonic acid (MES) + l-histidine (l-His) was selected. The results clearly showed that Pb2+, Cd2+, and Cu2+ were efficiently separated within 80 s in a 3.7 cm long native separation PDMS/PDMS channel and successfully detected at a single carbon fibre electrode. The theoretical plate numbers of Pb2+, Cd2+, and Cu2+ were 1.2 × 105, 2.5 × 105, and 1.9 × 105 m−1, respectively. The detection limits for Pb2+, Cd2+, and Cu2+ were 1.3, 3.3 and 7.4 μM (S/N = 3).  相似文献   

12.
A new surface based on poly(vinylferrocenium) (PVF+)-modified platinum electrode was developed for determination of Hg2+ ions in aqueous solutions. The polymer was electrodeposited on platinum electrode by constant potential electrolysis as PVF+ClO4. Cl ions were then attached to the polymer matrix by anion exchange and the modified electrode was dipped into Hg2+ solution. Hg2+ was preconcentrated at the polymer matrix by adsorption and also complexation reaction with Cl. Detection of Hg2+ was carried out by differential pulse anodic stripping voltammetry (DPASV) after reduction of Hg2+. Mercury ions as low as 5 × 10−10 M could be detected with the prepared electrode and the relative standard deviation was calculated as 6.35% at 1 × 10−6 M concentration (n = 6). Interferences of Ag+, Pb2+ and Fe3+ ions were also studied at two different concentration ratios with respect to Hg2+. The developed electrode was applied to the determination of Hg2+ in water samples.  相似文献   

13.
Cu2+-mediated salbutamol-imprinted polymer nanoparticles, synthesized by precipitation polymerization, were mixed with graphite powder and n-eicosane in order to fabricate a modified carbon paste electrode. This electrode was then applied for indirect differential pulse voltammetry determination of salbutamol. In the presence of Cu2+ ions, the formed Cu2+–salbutamol complex was adsorbed in to the pre-designed cavities of the MIP particles, situated on the electrode surface. Since the electrochemical signal of salbutamol was intrinsically small, the oxidation peak of the participant Cu2+, after reduction step, was recorded and used as an indication of salbutamol amount, adsorbed in the electrode. Different variables influencing the sensor performance were studied and the best conditions were chosen for the determination purpose. Correlation between the sensor response to salbutamol and its concentration was linear in the range of 1.0 × 10−9–5.5 × 10−8 M. Detection limit was calculated equal to 6.0 × 10−10 M (S/N). Five replicated determination of salbutamol (1 × 10−8 M) resulted in standard error of 3.28%, meaning a satisfactory precision of the determination method. The prepared sensor was applied for real sample analysis. In order to minimize the interference effect, the synthesized polymer was successfully used as a solid phase sorbent for salbutamol extraction, before analysis of real samples by the developed sensor.  相似文献   

14.
A PVC membrane electrode for copper ion based on 1,3-dithiane,2-(4-methoxy phenyl) as ionophore and o-nitrophenyl octyl ether as a plasticizer is demonstrated. The electrode exhibits a Nernstian slope of 29.5±1 mV per decade in a linear range of 3.0×10−6 to 5.0×10−2 M for Cu2+ ion. The detection limit of this electrode is 1.0×10−6 mol/l. This sensor has a very short response time of about 5 s and could be used in a pH range of 4.0-7.0. High selectivity was obtained over a wide variety of metal ions. The proposed electrode was successfully applied as an indicator electrode for the potentiometric titration of copper ion with EDTA and for the direct determination of copper in river water.  相似文献   

15.
The development of a simple, efficient and sensitive sensor for dissolved oxygen is proposed using the host-guest binding of a supramolecular complex at a host surface by combining a self-assembled monolayer (SAM) of mono-(6-deoxy-6-mercapto)-β-cyclodextrin (βCDSH), iron (III) tetra-(N-methyl-4-pyridyl)-porphyrin (FeTMPyP) and cyclodextrin-functionalized gold nanoparticles (CDAuNP). The supramolecular modified electrode showed excellent catalytic activity for oxygen reduction. The reduction potential of oxygen was shifted about 200 mV toward less negative values with this modified electrode, presenting a peak current much higher than those observed on a bare gold electrode. Cyclic voltammetry and rotating disk electrode (RDE) experiments indicated that the oxygen reduction reaction involves probably 4-electrons with a rate constant (kobs) of 7 × 104 mol−1 L s−1. A linear response range from 0.2 up to 6.5 mg L−1, with a sensitivity of 5.5 μA L mg−1 (or 77.5 μA cm−2 L mg−1) and a detection limit of 0.02 mg L−1 was obtained with this sensor. The repeatability of the proposed sensor, evaluated in terms of relative standard deviation was 3.0% for 10 measurements of a solution of 6.5 mg L−1 oxygen.  相似文献   

16.
A Sn2+ ion-selective electrode which was prepared with a polymeric membrane based on 6-(4-nitrophenyl)-2,4-diphenyl-3,5-diaza-bicyclo[3.1.0]hex-2-ene (NDDBH) as a ionophore. Effects of experimental parameters such as membrane composition, nature and amount of plasticizer, the amount of additive and concentration of internal solution on the potential response of Sn2+ sensor were investigated. The electrode exhibited a Nernstian slope of 28.8 ± 1.1 mV/decade of Sn2+ over a concentration range of 1.0 × 10−5 to 1.0 × 10−1 M of Sn2+ in an acidic solution (pH 1). The limit of detection was 4.0 × 10−6 M. The results show that this electrode can be used in ethanol media until 20% (v/v) concentration without interference. It can be used for more than 6 weeks without any considerable divergence in the potentials. The proposed membrane electrode revealed very good selectivity for Sn(II) ions over a wide variety of other cations and could be used in acidic media. The standard electrode potentials were determined at different temperatures and used to calculate the isothermal coefficient of the electrode. The stability constant (log Ks) of the Sn(II)-ionophore complex was determined at 25 °C by potentiometric titration in mixed aqueous solution. It was used as indicator electrode in potentiometric determination of Sn(II) ion in real samples.  相似文献   

17.
The suitability of a xanthone derivative, 1-hydroxy-3-methyl-9H-xanthen-9-one (HMX) as a neutral ionophore for the preparation of a polyvinylchloride (PVC) membrane electrode for aluminum(III) ions was investigated. The prepared electrode exhibits a Nernstian response for Al3+ ions over a wide concentration range (1.0 × 10−6 to 1.6 × 10−1 M) with a limit of detection 6.0 × 10−7 M. It has a relatively fast response time and can be used for at least three months without any considerable divergence in potentials. The proposed membrane electrode revealed very good selectivity for Al3+ ions over a wide variety of other cations and could be used at a working pH range of 3.0-8.5. It was used as an indicator electrode in potentiometric titration of aluminum ions with EDTA and in the determination of Al3+ in different real samples.  相似文献   

18.
Potentiometric thiocyanate-selective sensors based on the use of three synthesized di-, tetra-, and hexa-imidepyridine derivatives as novel anionic neutral ionophores in plasticized poly(vinyl chloride) (PVC) membranes are described. The sensors exhibit significantly enhanced response towards thiocyanate ions over the concentration range 5×10−6 to 1.0×10−2 M with a lower detection limit of 0.3 μg ml−1 and slopes ranging from −55.6 to −58.3 mV per decade. Fast and stable response, good reproducibility, long-term stability, applicability over a wide pH range (2-8) and high selectivity for SCN ion in the presence of 18 common anions are demonstrated. The sensors are used for direct potentiometric measurements of thiocyanate ions over the concentration range 0.2-580 μg ml−1 and for monitoring sequential titration of some metal ions (e.g. Ag+, Tl+, Cu2+, Pb2+) in binary and ternary mixtures. Sequential binding of these metal ions with SCN ensures share stepwise titration curves with consecutive end point breaks at the equivalent points. Recoveries of 98.5-99.1±0.3% are obtained for metal ion concentrations of 0.06-4 mg ml−1.  相似文献   

19.
An optical sensor for berberine, the basic ingredient of the widely used traditional Chinese medicine Coptis Chinensis, based on its intrinsic fluorescence enhanced by butylated-β-cyclodextrin (HDB-β-CD) immobilized in plasticized poly(vinyl chloride) (PVC) membrane has been developed. The drastic enhancement of fluorescence intensity of berberine was attributed to the formation of an inclusion complex between HDB-β-CD and berberine, which has been utilized as the basis of the fabrication of a berberine-sensitive fluorescence sensor. The proposed sensor was quite distinct from those fluorescent sensors for berberine reported so far which relied upon quenching the fluorescence of the sensing reagent immobilized on membrane by berberine. The response mechanism of optode membrane was discussed in detail from the view of molecular dynamics and the optimum steric configuration of the inclusion complex was presented by molecular dynamics simulation. The analytical performance characteristics of the proposed berberine-sensitive sensor were investigated. The sensor can be applied to the quantification of berberine with a linear range covering from 4.0×10−7 to 2.0×10−5 mol l−1 with a detection limit of 8.0×10−8 mol l−1. The sensor exhibits excellent reproducibility, reversibility and selectivity. The recommended method was successfully used for the determination of berberine in pharmaceutical preparations.  相似文献   

20.
Yuan S  Chen W  Hu S 《Talanta》2004,64(4):922-928
An anthraquinone (AQ) improved Na-montmorillonite nanoparticles (nano-SWy-2) chemically modified electrode (CME) has been developed for the simultaneous determination of trace levels of cadmium (II) and lead (II) by differential pulse anodic stripping voltammetry (DPASV). This method is based on a non-electrolytic preconcentration via ion exchange model, followed by an accumulation period via the complex formation in the reduction stage at −1.2 V, and then by an anodic stripping process. The mechanism of this design was proposed and the analytical performance was evaluated with several variables. Under the optimized working conditions, the detection limit was 3 and 1 nM for Cd2+ and Pb2+, respectively. The calibration graphs were linear in the concentration ranges of 8×10−9 to 1×10−6 mol L−1 (Cd2+) and of 2×10−9 to 1×10−6 mol L−1 (Pb2+). Many inorganic species did not interfere with the assay significantly; the high sensitivity, selectivity, and stability of this nano-SWy-2-AQ CME were demonstrated. The applications for the detection of trace levels of Cd2+ and Pb2+ in milk powder and lake water samples indicate that it is an economical and potent method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号