首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Huang MR  Rao XW  Li XG  Ding YB 《Talanta》2011,85(3):1575-1584
A novel membrane electrode for Pb(II) ion detection based on semi-conducting poly(m-phenylenediamine) microparticles as a unique solid ionophore was fabricated. The electrode exhibited significantly enhanced response towards Pb(II) over the concentration range from 3.16 × 10−6 to 0.0316 M at pH 3.0-5.0 with a low detection limit of 6.31 × 10−7 M, a high sensitivity displaying a near-Nernstian slope of 29.8 mV decade−1 for Pb(II). The electrode showed a long lifetime of 5 months and a short response time of 14 s. A systematical investigation on the effect of anion excluder and various foreign ions on the selectivity of the electrode by a fixed interference method suggests that all other metal ions hardly ever interfere with the determination of Pb(II) except high concentration Hg(II). The electrode was successfully used as an indicator electrode in the potentiometric titration of Pb(II) with EDTA. Furthermore, the electrode has been used to satisfactorily analyze four types of real-world samples like spiked human urine, spiked tap water, and river water containing interfering ions like Na(I), Ca(II), Mg(II), Zn(II), Pd(II), Fe(III), K(I), Cu(II) and Hg(II) up to 8.04 × 10−4 M, demonstrating fast response, high selectivity, good recovery (96.6-121.4%), good repeatability (RSD 0.31-6.45%), and small relative error (5.0%).  相似文献   

2.
A PVC membrane electrode for iodide ions based on Cu(I)-bathocuproine as ionophore in membrane composition is prepared. The electrode exhibits a linear response over a wide concentration range 5.0×10−6 to 2.0×10−1 mol l−1 with a detection limit 1.0×10−6 mol l−1. The proposed membrane electrode shows Nernstian behavior with a slope of −56.8 mV/decade, a fast response time 10 s and a lifetime at least 3 months. Iodide-selective electrode reveals good selectivities for iodide ion over a wide variety of the other anions and can be used in pH range of 3-9. It can also be used as an indicator electrode in potentiometric titration of iodide ion.  相似文献   

3.
The suitability of a xanthone derivative, 1-hydroxy-3-methyl-9H-xanthen-9-one (HMX) as a neutral ionophore for the preparation of a polyvinylchloride (PVC) membrane electrode for aluminum(III) ions was investigated. The prepared electrode exhibits a Nernstian response for Al3+ ions over a wide concentration range (1.0 × 10−6 to 1.6 × 10−1 M) with a limit of detection 6.0 × 10−7 M. It has a relatively fast response time and can be used for at least three months without any considerable divergence in potentials. The proposed membrane electrode revealed very good selectivity for Al3+ ions over a wide variety of other cations and could be used at a working pH range of 3.0-8.5. It was used as an indicator electrode in potentiometric titration of aluminum ions with EDTA and in the determination of Al3+ in different real samples.  相似文献   

4.
A new PVC membrane electrode for manganese(II) ion based on a recently synthesized Schiff base of 5-[(4-nitrophenylazo)-N-hexylamine]salicylaldimine is reported. The electrode exhibits a Nernstian response for Mn2+ ions over a wide concentration range (4.0 × 10−7 to 1.8 × 10−2 mol L−1) with a slope of 30.1 (±1.0). The limit of detection is 1.0 × 10−7 mol L−1. The electrode has a fast response time (∼10 s), a satisfactory reproducibility and relatively long life time. The proposed sensor revealed good selectivities over a wide variety of other cations include hard and soft metals. This electrode could be used in a pH range of 4.5-7.5. It was used as an indicator electrode in potentiometric titration of manganese(II) ions with EDTA solution.  相似文献   

5.
Beryllium(II) selective electrodes have been fabricated based on poly(vinyl chloride) (PVC) matrix membranes containing newly synthesized neutral carrier dibenzo(perhydrotriazino)aza-14-crown-4 ethers as ionophore. Best performance was exhibited by the membrane having a composition ionophore (IIa):PVC:sodium tetraphenylborate (NaTPB):tributyl phosphate (TBP) in the ratio (w/w; mg) of 5:30:3:65. This membrane worked well over a wide concentration range 7.6 × 10−6 to 1.0 × 10−1 M of Be2+ with a Nernstian slope of 30.7 mV per decade of beryllium activity. The response time of the sensor is 15 s and the membrane can be used over a period of 4 months with good reproducibility. The proposed electrode works well in a wide pH range 3.0–9.0. It was successfully applied to the determination of beryllium in a mineral sample.  相似文献   

6.
A novel potentiometric zirconium - PVC matrix membrane sensor incorporating bis(diphenylphosphino) ferrocene as an electroactive material and tris(2-ethylhexyl)phosphate as solvent mediator is described. In mixed acetate buffer solution of pH 4.8, the sensor displays a rapid and linear response for zirconium ion over the concentration range 1.0 × 10−1 to 1.0 × 10−7 mol L−1 with a good slope of 59.7 ± 0.3 mV per decade and detection limit 1.8 × 10−8 mol L−1. The best performance was obtained with membrane composition 33% PVC, 65% TEHP, 1% NaTPB and 1% ionophore. The proposed electrode revealed excellent selectivity for zirconium ion over a wide variety of alkali, alkaline earth, transition and heavy metal ions and could be used in a pH range of 4.15-7.8. The electrode was applied for at least 1 month without any considerable divergence in the potential responses. The practical utility of the electrode has been demonstrated by its use as an indicator electrode in the potentiometric titration of zirconium ions with sodium fluoride and in determination of zirconium ion in some alloy, tape and waste water samples.  相似文献   

7.
A plasticized poly (vinyl chloride) membrane electrode based on 1,3-bis(2-cyanobenzene)triazene (CBT) for highly selective determination of platinum(II) (in PtCl42− form) is developed. The electrode showed a good Nernstian response (29.8 ± 0.3 mV decade−1) over a wide concentration range (1.0 × 10−6 to 1.0 × 10−2 mol L−1). The limit of detection was 5.0 × 10−7 mol L−1. The electrode has a response time of about 40 s, and it can be used for at least 1 month without observing any considerable deviation from Nernstian response. The proposed electrode revealed an excellent selectivity toward platinum(II) ion over a wide variety of alkali, alkaline earth, transition, and heavy metal ions, and it could be used in the pH range of 3.2-5.1. The practical utility of the electrode has been demonstrated by its use in determination of platinum ion in, alloy, tap, mineral and river water samples.  相似文献   

8.
Singh AK  Saxena P 《Talanta》2005,66(4):993-998
A new highly Tl(I)-selective PVC membrane electrode based on tetrathia macrocycle 6,7: 14,15-dibenzo-5,8,13,16-tetraoxo-1,4,9,12-tetrathiacyclohexadecane [Bz2O4(16)aneS4] (I) as membrane carrier, o-nitrophenyloctyl ether (o-NPOE) as solvent mediator and potassium tetrakis(p-chlorophenyl)borate (KTpClPB) as lipophilic additive has been developed. The best performance was given by the membrane of macrocycle (I) with composition 3:120:1.5:50 (I:o-NPOE:KTpClPB:PVC). This electrode exhibits a Nernstian response to Tl(I) ions in the concentration range 1.0 × 10−1-2.23 × 10−6 M with a slope of 58.2 mV/decade of concentration and a detection limit of 1.58 × 10−6 M. The response time of the sensor is 12 s and can be used over a period of 4 months with good reproducibility. The proposed electrode revealed good selectivity over a wide variety of other cations including alkali, alkaline earth, heavy and transition metals. The electrode works well over a pH range of 3.2-11.5 and in partially non-aqueous medium with up to 30% organic content. The sensor was also used as an indicator electrode in potentiometric titration of Tl(I) ions with KI solution.  相似文献   

9.
A Sn2+ ion-selective electrode which was prepared with a polymeric membrane based on 6-(4-nitrophenyl)-2,4-diphenyl-3,5-diaza-bicyclo[3.1.0]hex-2-ene (NDDBH) as a ionophore. Effects of experimental parameters such as membrane composition, nature and amount of plasticizer, the amount of additive and concentration of internal solution on the potential response of Sn2+ sensor were investigated. The electrode exhibited a Nernstian slope of 28.8 ± 1.1 mV/decade of Sn2+ over a concentration range of 1.0 × 10−5 to 1.0 × 10−1 M of Sn2+ in an acidic solution (pH 1). The limit of detection was 4.0 × 10−6 M. The results show that this electrode can be used in ethanol media until 20% (v/v) concentration without interference. It can be used for more than 6 weeks without any considerable divergence in the potentials. The proposed membrane electrode revealed very good selectivity for Sn(II) ions over a wide variety of other cations and could be used in acidic media. The standard electrode potentials were determined at different temperatures and used to calculate the isothermal coefficient of the electrode. The stability constant (log Ks) of the Sn(II)-ionophore complex was determined at 25 °C by potentiometric titration in mixed aqueous solution. It was used as indicator electrode in potentiometric determination of Sn(II) ion in real samples.  相似文献   

10.
Bis(2-hydroxyacetophenone)butane-2,3-dihydrazone (BHAB) was used as new N-N Schiffs base which plays the role of an excellent ion carrier in the construction of a Cu(II) membrane sensor. The best performance was obtained with a membrane composition of 30% poly(vinyl chloride), 55% o-nitrophenyloctyl ether (NPOE), 7% BHAB and 8% oleic acid (OA). This sensor shows very good selectivity and sensitivity towards copper ion over a wide variety of cations, including alkali, alkaline earth, transition and heavy metal ions. The effect of membrane composition and pH and influence of additive anionic on the response properties of electrode were investigated. The electrode exhibits a Nernstian behavior (with slope of 29.6 mV per decade) over a very wide concentration range (5.0 × 10−8 to 1.0 × 10−2 mol L−1) with a detection limit of 3.0 × 10−8 mol L−1 (2.56 ng mL−1). It shows relatively fast response time, in whole concentration range (<15 s), and can be used for at least 12 weeks in the pH range of 2.8-5.8. The proposed sensor was successfully used to determination of copper in different water samples and as indicator electrode in potentiometric titration of copper ion with EDTA.  相似文献   

11.
Singh AK  Saxena P  Mehtab S  Gupta B 《Talanta》2006,69(2):521-526
A new PVC membrane electrode based on 5,7,12,14-dibenzo-2,3,9,10-tetraoxa-1,4,8,11-tetraazacyclotetradecane (I) as an ion carrier, o-nitrophenyloctyl ether (o-NPOE) as solvent mediator and sodium tetraphenylborate (NaTPB) as lipophilic additive was fabricated and investigated as Sr2+-selective electrode. The best performance was exhibited by the membrane having composition 8:200:4:120 (I:o-NPOE:NaTPB:PVC). The electrode exhibited a Nernstian response for strontium ion over a wide concentration range 3.98 × 10−6 to 1.0 × 10−1 M with a slope of 29.0 ± 0.1 mV/decade of concentration and a detection limit of 2.82 × 10−6 M. It showed a response time of less than 10 s and could be used for at least 3 months without any divergence in potential. The proposed electrode showed a good discriminating ability towards strontium(II) ion over a wide variety of other metal ions including alkali, alkaline earth, transition, and heavy metal ions. The electrode can be used in the pH range of 2.5-10.5 and in mixtures containing up to 35% (v/v) non-aqueous content. It was used as an indicator electrode in potentiometric titration of strontium ion against EDTA.  相似文献   

12.
A highly selective membrane electrode based on nickel(II)-1,4,8,11,15,18,22,25-octabutoxyphthalocyanine (NOBP) is presented. The proposed electrode shows very good selectivity for thiocyanate ions over a wide variety of common inorganic and organic anions. The sensor displays a near Nernstian slope of −58.7 ± 0.6 mV per decade. The working concentration range of the electrode is 1.0 × 10−6 to −1.0 × 10−1 M with a detection limit of 5.7 × 10−7 M (33.06 ng/mL). The response time of the sensor in whole concentration ranges is very short (<10 s). The response of the sensor is independent on the pH range of 4.3-9.8. The best performance was obtained with a membrane composition of 30% PVC, 65% dibutyl phthalate, 3% NOBP and 2% hexadecyltrimethylammonium bromide. It was successfully applied to direct determination of thiocyanate in biological samples, and as an indicator electrode for titration of thiocyanate ions with AgNO3 solution.  相似文献   

13.
We report about the use of carbon paste electrode modified with kaolinite for analytical detection of trace lead(II) in domestic water by differential pulse voltammetry. Kaolinite clay was modified with tripolyphosphate (TPP) by impregnation method. The results show that TPP in kaolinite clay plays an important role in the accumulation process of Pb(II) on the modified electrode surface. The electroanalytical procedure for determination of Pb(II) comprised two steps: chemical accumulation of the analyte under open-circuit conditions, followed by electrochemical detection of the pre-concentrated species using differential pulse voltammetry. The analytical performance of this system has been explored by studying the effects of preconcentration time, carbon paste composition, pH, supporting electrolyte concentration, as well as interferences due to other ions. The calculated detection limit based on the variability of a blank solution (3sb criterion) for 10 measurements was 8.4 × 10−8 mol L−1, and the sensitivity determined from the slope of the calibration graph was 0.910 mol L−1. The reproducibility (RSD) for five replicate measurements at 1.0 mg L−1 lead level was 1.6%. The results indicate that this electrode is sensitive and effective for the determination of Pb2+.  相似文献   

14.
Jeong T  Lee HK  Jeong DC  Jeon S 《Talanta》2005,65(2):543-548
PVC membrane electrodes for lead ion based on N,N’-bis(salicylidene)-2,6-pyridinediamine as membrane carrier were prepared. Among their membranes, a membrane electrode (m-3) containing o-NPOE as a plasticizer and 50 mol% additive displays an excellent Nernstian response (29.4 mV/decade) and the limit of detection of −log a (M) = 6.04 to Pb2+ in Pb(NO3)2 solutions at room temperature. It has a rapid response time within 10 s over the entire concentration range. The proposed electrode revealed good selectivity and response for Pb2+ over a wide variety of other metal ions in a pH 5.0 buffer solutions, and good reproducibility of base line in subsequent measurements.  相似文献   

15.
A highly selective poly(vinyl chloride) (PVC) membrane electrode based on 1,8-dibenzyl-1,3,6,8,10,13-hexaazacyclotetradecane-Ni(II) as a membrane carrier with unique selectivity toward thiocyanate is reported. The influence of membrane composition, pH and foreign anions were investigated. The sensor exhibits a Nernstian response for thiocyanate over a wide concentration range of 3.3×10−6 to 0.10 M, with a slope 58.4±0.3 mV per decade. The limit of detection is 3.0×10−6 M SCN. The sensor has a response time of <20 s and can be used for at least 2 months without any considerable divergence in potential. The proposed electrode shows fairly a good discriminating ability towards SCN ion in comparison to other anions. It was successfully applied to direct determination of thiocyanate in urine and saliva and it was also used as an indicator electrode in titration of thiocyanate with Ag+ ions.  相似文献   

16.
A novel coated wire electrode (CWE) for Al(III) ions is described based on 2-(1H-benzo[d]imidazole-1-yl)-1-phenylethanoneoxime as a new ionophore in carbon-PVC composite. The sensor exhibits significantly enhanced selectivity toward Al3+ ions over the concentration range 4.3 × 10−7 to 5.0 × 10−2 M with a lower detection limit of 2.5 × 10−7 M and a Nernstian slope of 19.41 ± 0.52 mV decade−1 of aluminium activity. This sensor has a short response time of about 10 s and is reproducible and stable for at least forty-five days. This proposed CWE which is designed for the first time revealed good selectivity for Al(III) over a wide variety of other cations. The performance of the sensor is best in the pH range of 3.1-5.5 and it also works well in partially non-aqueous medium. Moreover, the assembly has been successfully used as an indicator electrode in the potentiometric titration of aluminium (III) against EDTA and also in determining Al(III) quantitatively in pharmaceutical and mineral water samples.  相似文献   

17.
《Analytical letters》2012,45(13):2611-2629
ABSTRACT

New potentiometric membranesensorsresponsive to Pb(II) have been developed. The membrane sensors are based on three different 9, 10-anthraquinone derivatives. The electrode based on 1, 4-bis (prop-21-enyloxy)-9, 10-anthraquinone exhibits a good Nernstian response for Pb(II) ions over a wide concentration range (2.5×10?6 - 1.0×10?2 M) with a slope of 29.8 mV decade?1. Detection limit is 1.5×10?6 M. The response time of the sensor is 15s and the useful working pH range is 4.7-6.8. The membrane can be used for more than 4 months without any considerable divergence in potentials. The electrodes revealed comparatively good selectivities with respect to alkali, alkaline earth and some transition and heavy metal ions. It was used as an indicator electrode in potentiometric titration of lead ions (with sulfate and oxalate ions), and for the determination of lead in waste waters.  相似文献   

18.
A polyvinyl chloride (PVC) based membrane sensor for cerium ions was prepared by employing N,N′-bis[2-(salicylideneamino)ethyl]ethane-1,2-diamine as an ionophore, oleic acid (OA) as anion excluder and o-nitrophenyloctyl ether (o-NPOE) as plasticizer. The plasticized membrane sensor exhibits a Nernstian response for Ce(III) ions over a wide concentration range (1.41 × 10−7 to 1.0 × 10−2 M) with a limit of detection as low as 8.91 × 10−8 M. It has a fast response time (<10 s) and can be used for 4 months. The sensor revealed a very good selectivity with respect to common alkali, alkaline earth and heavy metal ions. The response of the proposed sensor is independent of pH between 3.0 and 8.0. It was used as an indicator electrode in potentiometric titration of fluoride, carbonate and oxalate anions and determination of cerium in simulated mixtures.  相似文献   

19.
Pankaj Kumar 《Talanta》2010,82(4):1107-1112
An all-solid-state electrode, containing a synthesized chiral A2B2 macrocyclic compound namely (4R,5R,15R,16R)-4,5,15,16-tetraphenyl-3,6,14,17-tetraazatricyclo [13.3.1.18,12] tetracosa-1(23),8,10,12(24)19,21-hexaene-2,7,13,18-tetrone as an ionophore in polyvinyl chloride (PVC)/polyurethane (PU) membrane matrix, has been developed for the selective quantification of monohydrogen phosphate ions. The best performing membrane contained PVC, PU, ionophore, and nitrophenyl octyl ether as a plasticizer in the ratio 32.2:2.6:65.1 (w/w, %). It exhibited a near-Nernstian slope of 31.0 ± 1.0 mV/decade of activity for HPO42− ions in the concentration range of 1.0 × 10−6 to 1.0 × 10−2 M at pH 7.4. The detection limit of the electrode was 8.4 × 10−7 M and the life time was six weeks. The electrode displayed excellent selectivity for monohydrogen phosphate over other anions and the selectivity sequence was determined as HPO42− > SO42− > Ac > NO3 > ClO4 > Cl > I. The selective electrode for the monohydrogen phosphate ions was evaluated with a standard reference material (SRM 1548) and the titration of the sample solution.  相似文献   

20.
The possibility of applying antimony-film modified glassy carbon electrode in sequential-injection analysis (SIA) was investigated with the objective of determining Pb(II) and Cd(II) by anodic stripping voltammetry (ASV). The conditions of antimony-film deposition concerning composition of the plating/carrier solutions, concentrations of Sb(III) and hydrochloric acid, effects of different supporting electrolyte salts, and plating potential were optimized. It was found that the antimony-film deposition on glassy carbon substrate in a sample solution consisting of 750 μg L−1 Sb(III), 0.5 mol L−1 HCl at −1.5 V (vs. Ag/AgCl/3 mol L−1 KCl) yielded a modified electrode suitable for the determination of Pb(II) and Cd(II) at the μg L−1 level. The reproducibility of the analytical signals was characterized by a relative standard deviation lower than 2.8%, and the calculated values of detection limits were 1.2 μg L−1 for Pb(II) and 1.4 μg L−1 for Cd(II). The presence of KSCN in the sample solution offers the possibility of detecting ions with more negative oxidation potentials like Zn(II), Mn(II) or Cr(III). The developed SIA-ASV procedure was compared with the commonly used batch method, and its applicability was tested on a spiked tap water sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号