首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hollow fibre liquid-phase microextraction with in situ derivatization using dansyl chloride has been successfully developed for the high-performance liquid chromatography-ultraviolet (HPLC-UV) determination of the biogenic amines (tryptamine, putrescine, cadaverine, histamine, tyramine, spermidine) in food samples. Parameters affecting the performance of the in situ derivatization process such as type of extraction solvent, temperature, extraction time, stirring speed and salt addition were studied and optimized. Under the optimized conditions (extraction solvent, dihexyl ether; acceptor phase, 0.1 M HCl; extraction time, 30 min; extraction temperature, 26 °C; without addition of salt), enrichment factors varying from 47 to 456 were achieved. Good linearity of the analytes was obtained over a concentration range of 0.1–5 μg mL−1 (with correlation coefficients of 0.9901–0.9974). The limits of detection and quantification based on a signal-to-noise ratio of 3–10, ranged from 0.0075 to 0.030 μg mL−1 and 0.03 to 0.10 μg mL−1, respectively. The relative standard deviations based on the peak areas for six replicate analysis of water spiked with 0.5 μg mL−1 of each biogenic amine were lower than 7.5%. The method was successfully applied to shrimp sauce and tomato ketchup samples, offering an interesting alternative to liquid–liquid extraction and solid phase extraction for the analysis of biogenic amines in food samples.  相似文献   

2.
A new and fast hollow fiber based liquid phase microextraction (HF-LPME) method using volatile organic solvents coupled with high-performance liquid chromatography (HPLC) was developed for determination of aromatic amines in the environmental water samples. Analytes including 3-nitroaniline, 3-chloroaniline and 4-bromoaniline were extracted from 6 mL basic aqueous sample solution (donor phase, NaOH 1 mol L−1) into the thin film of organic solvent that surrounded and impregnated the pores of the polypropylene hollow fiber wall (toluene, 20 μL), then back-extracted into the 6 μL acidified aqueous solution (acceptor phase, HCl 0.5 mol L−1) in the lumen of the two-end sealed hollow fiber. After the extraction, 5 μL of the acceptor phase was withdrawn into the syringe and injected directly into the HPLC system for the analysis. The parameters influencing the extraction efficiency including the kind of organic solvent and its volume, composition of donor and acceptor phases and the volume ratio between them, extraction time, stirring rate, salt addition and the effect of the analyte complexation with 18-crown-6 ether were investigated and optimized. Under the optimal conditions (donor phase: 6 mL of 1 mol L−1 NaOH with 10% NaCl; organic phase: 20 μL of toluene; acceptor phase: 6 μL of 0.5 mol L−1 HCl and 600 m mol L−1 18-crown-6 ether; pre-extraction and back-extraction times: 75 s and 10 min, respectively; stirring rate: 800 rpm), the obtained EFs were between 259 and 674, dynamic linear ranges were 0.1-1000 μg L−1 (R > 0.9991), and also the limits of detection were in the range of 0.01-0.1 μg L−1. The proposed procedure worked very well for real environmental water samples with microgram per liter level of the analytes, and good relative recoveries (91-102%) were obtained for the spiked sample solutions.  相似文献   

3.
A new straightforward method based on cloud-point extraction (CPE) was developed to determine osthole in rat plasma by reversed phase high-performance liquid chromatography with ultraviolet detection using a photodiode array detector. The non-ionic surfactant Triton X-114 was chosen as the extract solvent. Variable parameters affecting the CPE efficiency were evaluated and optimized. A Zorbax SB-C18 column was used for elution separation at 25 °C with detection wavelength at 322 nm. Under the optimum conditions, the method was shown to be reproducible and reliable with intra-day precision below 7.62%, inter-day precision below 6.37%, and accuracy within ±5.02% and mean extraction recovery more than 90.4%, which were all calculated using a range of spiked samples at three concentrations of 0.5, 5.0 and 15.0 μg mL−1 for osthole in plasma. The calibration curve for the analyte was linear in the range from 0.1 to 20 μg mL−1 with the correlation coefficients greater than 0.9981. Limit of detection (S/N = 3) was less than 0.03 μg mL−1and limit of quantification (S/N = 10) was less than 0.1 μg mL−1. After strict validation, the method was successfully applied to the pharmacokinetic study of osthole in rats after oral and intravenous administration, respectively.  相似文献   

4.
A three-phase hollow fiber liquid-phase microextraction (HF-LPME) coupled either with capillary electrophoresis (CE) or high performance liquid chromatography (HPLC) with UV detection methods was successfully developed for the determination of trace levels of the anti-diabetic drug, rosiglitazone (ROSI) in biological fluids. The analyte was extracted into dihexyl ether that was immobilized in the wall pores of a porous hollow fiber from 10 mL of aqueous sample, pH 9.5 (donor phase), and was back extracted into the acceptor phase that contained 0.1 M HCl located in the lumen of the hollow fiber. Parameters affecting the extraction process such as type of extraction solvent, HCl concentration, donor phase pH, extraction time, stirring speed, and salt addition were studied and optimized. Under the optimized conditions (extraction solvent, dihexyl ether; donor phase pH, 9.5; acceptor phase, 0.1 M HCl; stirring speed, 600 rpm; extraction time, 30 min; without addition of salt), enrichment factor of 280 was obtained. Good linearity and correlation coefficients of the analyte was obtained over the concentration ranges of 1.0–500 and 5.0–500 ng mL−1 for the HPLC (r2 = 0.9988) and CE (r2 = 0.9967) methods, respectively. The limits of detection (LOD) and limits of quantitation (LOQ) for the HPLC and CE methods were (0.18, 2.83) and (0.56, 5.00) ng mL−1, respectively. The percent relative standard deviation (n = 6) for the extraction and determination of three concentration levels (10, 250, 500 ng mL−1) of ROSI using the HPLC and CE methods were less than 10.9% and 13.2%, respectively. The developed methods are simple, rapid, sensitive and are suitable for the determination of trace amounts of ROSI in biological fluids.  相似文献   

5.
A simple, selective, sensitive and inexpensive method of hollow fiber-based liquid–liquid–liquid microextraction (HF-LLLME) combined with high performance liquid chromatography (HPLC)-ultraviolet (UV) detection was developed for the determination of four acidic phytohormones (salicylic acid (SA), indole-3-acetic acid (IAA), (±) abscisic acid (ABA) and (±) jasmonic acid (JA)) in natural coconut juice. To the best of our knowledge, this is the first report on the use of liquid phase microextraction (LPME) as a sample pretreatment technique for the simultaneous analysis of several phytohormones. Using phenetole to fill the pores of hollow fiber as the organic phase, 0.1 mol L−1 NaOH solution in the lumen of hollow fiber as the acceptor phase and 1 mol L−1 HCl as the donor phase, a simultaneous preconcentration of four target phytohormones was realized. The acceptor phase was finally withdrawn into the microsyringe and directly injected into HPLC for the separation and quantification of the target phytohormones. The factors affecting the extraction efficiency of four phytohormones by HF-LLLME were optimized with orthogonal design experiment, and the data was analyzed by Statistical Product and Service Solutions (SPSS) software. Under the optimized conditions, the enrichment factors for SA, IAA, ABA and JA were 243, 215, 52 and 48, with the detection limits (S/N = 3) of 4.6, 1.3, 0.9 ng mL−1 and 8.8 μg mL−1, respectively. The relative standard deviations (RSDs, n = 7) were 7.9, 4.9, 6.8% at 50 ng mL−1 level for SA, IAA, ABA and 8.4% at 500 μg mL−1 for JA, respectively. To evaluate the accuracy of the method, the developed method was applied for the simultaneous analysis of several phytohormones in five natural coconut juice samples, and the recoveries for the spiked samples were in the range of 88.3–119.1%.  相似文献   

6.
A simple and sensitive single step electro membrane extraction (EME) procedure was demonstrated for biological organic anions with determination by ion chromatography (IC). Nitrite, adipate, oxalate, iodide, fumarate, thiocyanate and perchlorate were extracted from aqueous donor solutions, across a supported liquid membrane (SLM) consisting of methanol impregnated in the walls of a porous polypropylene membrane bag and into an alkaline aqueous acceptor solution in the lumen of the propylene envelope by the application of potential of 12 V applied across the SLM. The acceptor solution was analyzed by IC. Parameters affecting the extraction performance such as type of SLM, extraction time, pH of the donor and acceptor solution, and extraction voltage were studied. The most favorable EME conditions were methanol as the SLM, extraction time of 5 min, pH of acceptor and sample solutions of 12 and 4, respectively, and a voltage of 12 V. Portable 12 V batteries were used in the study. Under these optimized conditions, all anions had enrichment factors ranging from 3.6 to 36.2 with relative standard deviations (n = 3) of between 6.6 and 17.5%. Good linearity ranging from 0.1 to 10 μg mL−1 with coefficients of correlation (r) of between 0.9981 and 0.9996 were obtained. The limits of detection of the EME-IC method were from 0.01 to 0.14 μg mL−1. The developed methodology was applied to amniotic fluid samples to evaluate the feasibility of the method for real applications.  相似文献   

7.
A simple, precise, accurate and validated, acetonitrile-free, reverse phase high performance liquid chromatography (HPLC) method is developed for the determination of melamine in dry and liquid infant formula. The separation is performed on a Kromasil C18 column (150 mm × 3.2 mm I.D., 5 μm particle size) at room temperature. The mobile phase (0.1% TFA/methanol 90:10) is pumped at a flow rate of 0.3 mL min−1 with detection at 240 nm. Melamine elutes at 3.7 min. A linear response (r > 0.999) is observed for samples ranging from 1.0 to 80 μg mL−1. The method provides recoveries of 97.2-101.2% in the concentration range of 5-40 μg mL−1, intra- and inter-day variation in <1.0% R.S.D. The limit of detection (LOD) and limit of quantification (LOQ) values are 0.1 μg mL−1 and 0.2 μg mL−1, respectively.  相似文献   

8.
A continuous flow liquid membrane extraction (CFLME)-C18 precolumn-liquid chromatography system was developed for preconcentration and determination of chlorinated phenols (CPs). After preconcentration by CFLME, which is based on the combination of continuous flow liquid-liquid extraction and supported liquid membrane, CPs were enriched in 960 μl of 0.5 mol l−1 NaOH used as acceptor. This acceptor was on-line neutralized and transported onto the C18 precolumn where analytes were absorbed and focused. Then the focused analytes were injected onto the C18 analytical column for separation and detected at 215 nm with a diode array detector. CFLME related parameters such as flow rates, pH of donor and acceptor concentration were optimized. The proposed method presents detection limits of 0.02-0.09 μg l−1 (S/N=3) when 100 ml samples were enriched. The proposed method was successfully applied to determine CPs in tap water and river water samples with spiked recoveries in the range of 70-121%.  相似文献   

9.
El-Bagary RI  Elkady EF  Ayoub BM 《Talanta》2011,85(1):673-680
Two reversed-phase liquid chromatographic (RP-LC) methods have been developed for the determination of sitagliptin phosphate monohydrate (STG). The first method comprised the determination of STG alone in bulk and plasma; and in its pharmaceutical preparation. This method was based on isocratic elution of STG using a mobile phase consisting of potassium dihydrogen phosphate buffer pH (7.8)-acetonitrile (70:30, v/v) at a flow rate of 1 mL min−1 with flourometric detection. The flourometric detector was operated at 267 nm for excitation and 575 nm for emission. In the second method, the simultaneous determination of STG and metformin (MET) in the presence of sitagliptin alkaline degradation product (SDP) has been developed. In this method, the ternary mixture of STG, MET and SDP was separated using a mobile phase consisting of potassium dihydrogen phosphate buffer pH (4.6)-acetonitrile-methanol (30:50:20, v/v/v) at a flow rate of 1 mL min−1 with UV detection at 220 nm. Chromatographic separation in the two methods was achieved on a Symmetry® Waters C18 column (150 mm × 4.6 mm, 5 μm). Linearity, accuracy and precision were found to be acceptable over the concentration ranges of 0.25-200 μg mL−1 for STG with the first method and 5-160 μg mL−1, 25-800 μg mL−1 for STG and MET, respectively with the second method. The optimized methods were validated and proved to be specific, robust and accurate for the quality control of the cited drugs in pharmaceutical preparations.  相似文献   

10.
The directly suspended droplet microextraction (DSDME) technique coupled with the capillary gas chromatography-flame ionization detector (GC-FID) was used to determine BTEX compounds in aqueous samples. The effective parameters such as organic solvent, extraction time, microdroplet volume, salt effect and stirring speed were optimized. The performance of the proposed technique was evaluated for the determination of BTEX compounds in natural water samples. Under the optimal conditions the enrichment factors ranged from 142.68 to 312.13, linear range; 0.01-20 μg mL−1, limits of detection; 0.8-7 ng mL−1 for most analytes. Relative standard deviations for 0.2 μg mL−1 of BTEX in water were in the range 1.81-2.47% (n = 5). The relative recoveries of BTEX from surface water at spiking level of 0.2 μg mL−1 were in the range of 89.87-98.62%.  相似文献   

11.
Electro membrane extraction (EME) as a new microextraction method was applied for extraction of sodium diclofenac (SDF) as an acidic compound from wastewater, urine, bovine milk and plasma samples. Under applied potential of 20 V during the extraction, SDF migrated from a 2.1 mL of sample solution (1 mM NaOH), through a supported liquid membrane (SLM), into a 30 μL acceptor solution (10 mM NaOH), exist inside the lumen of the hollow fiber. The negative electrode was placed in the donor solution, and the positive electrode was placed in the acceptor solution. 1-octanol was immobilized in the pores of a porous hollow fiber of polypropylene as SLM. Then the extract was analyzed by means of high-performance liquid chromatography (HPLC) with UV-detection for quantification of SDF. Best results were obtained using a phosphate running electrolyte (10 mM, pH 2.5). The ranges of quantitation for different samples were 8–500 ng mL−1. Intra- and inter-day RSDs were less than 14.5%. Under the optimized conditions, the preconcentration factors were between 31 and 66 and also the limit of detections (LODs) ranged from 2.7 ng mL−1 to 5 ng mL−1 in different samples. This procedure was applied to determine SDF in wastewater, bovine milk, urine and plasma samples (spiked and real samples). Extraction recoveries for different samples were between 44–95% after 5 min of extraction.  相似文献   

12.
Dispersive liquid-liquid microextraction (DLLME) coupled with high-performance liquid chromatography-variable wavelength detector (HPLC-VWD) was developed for extraction and determination of chloramphenicol (CAP) and thiamphenicol (THA) in honey. In this extraction method, 1.0 mL of acetonitrile (as dispersive solvent) containing 30 μL 1,1,2,2-tetrachloroethane (as extraction solution) was rapidly injected by syringe into a 5.00-mL water sample containing the analytes, thereby forming a cloudy solution. After extraction, phase separation was performed by centrifugation and the enriched analytes in the sedimented phase were determined by HPLC-VWD. Some important parameters, such as the nature and volume of extraction solvent and dispersive solvent, extraction time, sample solution pH, sample volume and salt effect were investigated and optimized. Under the optimum extraction condition, the method yields a linear calibration curve in the concentration range from 3 to 2000 μg kg−1 for target analytes. The enrichment factors for CAP and THA were 68.2 and 87.9, and the limits of detection (S/N = 3) were 0.6 and 0.1 μg kg−1, respectively. The relative standard deviations (RSDs) for the extraction of 10 μg kg−1 of CAP and THA were 4.3% and 6.2% (n = 6). The main advantages of DLLME-HPLC method are simplicity of operation, rapidity, low cost, high enrichment factor, high recovery, good repeatability and extraction solvent volume at microliter level. Honey samples were successfully analyzed using the proposed method.  相似文献   

13.
Carrier-mediated three-phase hollow fiber microextraction combined with high-performance liquid chromatography-ultra violet detection (HPLC-UV) was applied for the extraction and determination of propylthiouracil in biological samples. Propylthiouracil (PTU) was extracted from 7.5 mL of the basic solution (the source phase) with pH 12 into an organic phase (n-octanol containing 6% (w/v) of Aliquat 336 as the carrier) impregnated in the pores of a hollow fiber, and finally was back extracted into 24 μL of the acidic solution located inside the lumen of the hollow fiber (the receiving phase). The extraction was performed through the gradient of counter ion from the source to the receiving phase. The effects of different variables on the extraction efficiency were studied simultaneously using an experimental design. A half-fractional factorial design was employed for screening to determine the variables significantly affecting the extraction efficiency. Then, the factors with significant effect were optimized using a central composite design (CCD) and the response surface equations were developed. The optimal experimental conditions obtained from this statistical evaluation included: source phase, pH 12; temperature, 25 °C; extraction time, 40 min; counter ion concentration, 2 mol L−1 of NaClO4; organic solvent 6% of Aliquat in octanol and without salt addition in the source phase. Under the optimized conditions, the preconcentration factors were between 125 and 198 and also the limit of detections (LODs) ranged from 0.1 μg L−1 to 0.4 μg L−1 in different biological samples. The calibration curve was linear (r2 = 0.998) in the concentration range of 0.5-1000 μg L−1. Finally, the feasibility of the proposed method was successfully confirmed by extraction and determination of PTU in human plasma and urine as well as the bovine milk and meat samples in microgram per liter, and suitable results were obtained (RSDs < 6.3%).  相似文献   

14.
A simple isocratic reversed-phase high-performance liquid chromatographic method (RP-HPLC) was developed for the simultaneous determination of buprenorphine hydrochloride, naloxone hydrochloride dihydrate and its major impurity, noroxymorphone, in pharmaceutical tablets. The chromatographic separation was achieved with 10 mmol L−1 potassium phosphate buffer adjusted to pH 6.0 with orthophosphoric acid and acetonitrile (17:83, v/v) as mobile phase, a C-18 column, Perfectsil Target ODS3 (150 mm × 4.6 mm i.d., 5 μm) kept at 35 °C and UV detection at 210 nm. The compounds were eluted isocratically at a flow rate of 1.0 mL min−1. The average retention times for naloxone, noroxymorphone and buprenorphine were 2.4, 3.8 and 8.1 min, respectively. The method was validated according to the ICH guidelines. The validation characteristics included accuracy, precision, linearity, range, specificity, limit of quantitation and robustness. The calibration curves were linear (r > 0.996) over the concentration range 0.22-220 μg mL−1 for buprenorphine hydrochloride and 0.1-100 μg mL−1 for naloxone hydrochloride dihydrate and noroxymorphone. The recoveries for all three compounds were above 96%. No spectral or chromatographic interferences from the tablet excipients were found. This method is rapid and simple, does not require any sample preparation and is suitable for routine quality control analyses.  相似文献   

15.
Three-phase hollow fiber microextraction technique combined with high performance liquid chromatography-ultra violet (HPLC-UV) was applied for the extraction and determination of gabapentin in biological fluids. Gabapentin (GBP) was derivatized with 1-fluoro-2,4-dinitrobenzene, as a UV absorbent agent in borate buffer (pH 8.2) before extraction. The derivative product of GBP was extracted from the 8.5 mL of acidic solution (source phase) into an organic phase (dihexyl ether) impregnated in the pores of a hollow fiber and finally back-extracted into 24 μL of the basic solution (pH 9.1) located inside the lumen of the hollow fiber (receiving phase). The extraction took place due to pH gradient between the inside and outside of the hollow fiber membrane. In order to achieve maximum extraction efficiency, different parameters affecting the extraction conditions were optimized. Under the optimized conditions, preconcentration factor of 95 and detection limit (LOD) of 0.2 μg L−1 were obtained. The calibration graph was linear within the range of 0.6-5000 μg L−1. Finally, the feasibility of the proposed method was successfully confirmed by extraction and determination of GBP in human urine and plasma samples in the range of microgram per liter and suitable results were obtained (RSDs < 6.3%).  相似文献   

16.
A sensitive and selective high-performance liquid chromatographic method has been developed and validated for the determination of nateglinide in human plasma. Nateglinide and the internal standard, undecylenic acid, were extracted from plasma by liquid-liquid extraction using a mixture of ethyl acetate-diethyl ether, 50:50 (v/v). Pre-column derivatization reaction was performed using a coumarin-type fluorescent reagent, N-(7-methoxy-4-methyl-2-oxo-2H-6-chromenyl)-2-bromoacetamide. The derivatization proceeded in acetone in the presence of potassium carbonate and catalyzed by 18-crown-6 ether. The fluorescent derivatives were separated under isocratic conditions on a Hypersil BDS-C8 analytical column (250.0 mm × 2.1 mm i.d., particle size 5 μm) with a mobile phase that consisted of 65% acetonitrile in water and pumped at a flow rate of 0.50 mL min−1. The excitation and emission wavelengths were set at 345 and 435 nm, respectively. The assay was linear over a concentration range of 0.05-16.00 μg mL−1 for nateglinide with a limit of quantitation of 0.05 μg mL−1. Quality control samples (0.05, 4.50 and 16.00 μg mL−1) in five replicates from five different runs of analysis demonstrated intra-assay precision (%coefficient of variation <6.8%), inter-assay precision (%coefficient of variation <1.6%) and an overall accuracy (%relative error) less than −3.4%. The method can be used to quantify nateglinide in human plasma covering a variety of pharmacokinetic or bioequivalence studies.  相似文献   

17.
Temperature-controlled ionic liquid dispersive liquid phase microextraction (TCIL-DLPME) combined with high performance liquid chromatography-diode array detection (HPLC-DAD) was applied for preconcentration and determination of chlorobenzenes in well water samples. The proposed method used 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim][PF6]) as the extraction solvent. The effect of different variables on extraction efficiency was studied simultaneously using an experimental design. The variables of interest in the TCIL-DLPME were extraction solvent volume, salt effect, solution temperature, extraction time, centrifugation time, and heating time. The Plackett-Burman design was employed for screening to determine the variables significantly affecting the extraction efficiency. Then, the significant factors were optimized by using a central composite design (CCD) and the response surface equations were developed. The optimal experimental conditions obtained from this statistical evaluation included: extraction solvent volume, 75 μL; extraction time, 20 min; centrifugation time, 25 min; heating time, 4 min; solution temperature, 50 °C; and no addition of salt. Under optimal conditions, the preconcentration factors were between 187 and 298. The limit of detections (LODs) ranged from 0.05 μg L−1 (for 1,2-dichlorobenzene) to 0.1 μg L−1 (for 1,2,3-trichlorobenzene). Linear dynamic ranges (LDRs) of 0.5-300 and 0.5-500 μg L−1 were obtained for dichloro- and trichlorobenzenes, respectively. The performance of the method was evaluated for extraction and determination of chlorobenzenes in well water samples in micrograms per liter and satisfactory results were obtained (RSDs < 9.2%).  相似文献   

18.
A novel technique, high temperature headspace liquid-phase microextraction (HS-LPME) with room temperature ionic liquid (RTIL), 1-butyl-3-methylimidazolium hexafluorophosphate ([C4MIM][PF6]) as extractant, was developed for the analysis of dichlorodiphenyltrichloroethane (p,p′-DDT and o,p′-DDT) and its metabolites including 4,4′-dichlorodiphenyldichloroethylene (p,p′-DDE) and 4,4′-dichlorodiphenyldichloroethane (p,p′-DDD) in water samples by high performance liquid chromatography with ultraviolet detection. The parameters such as salt content, sample pH and temperature, stirring rate, extraction time, microdrop volume, and sample volume, were found to have significant influence on the HS-LPME. The conditions optimized for extraction of target compounds were as follows: 35% NaCl (w/v), neutral pH condition, 70 °C, 800 rpm, 30 min, 10 μL [C4MIM][PF6], and 25 mL sample solutions. Under the optimized conditions, the linear range, detection limit (S/N = 3), and precision (R.S.D., n = 6) were 0.3-30 μg L−1, 0.07 μg L−1, and 8.0% for p,p′-DDD, 0.3-30 μg L−1, 0.08 μg L−1, and 7.1% for p,p′-DDT, 0.3-30 μg L−1, 0.08 μg L−1, and 7.2% for o,p′-DDT, and 0.2-30 μg L−1, 0.05 μg L−1, and 6.8% for p,p′-DDE, respectively. Water samples including tap water, well water, snow water, reservoir water, and wastewater were analyzed by the proposed procedure and the recoveries at 5 μg L−1 spiked level were in the range of 86.8-102.6%.  相似文献   

19.
A quantitative method of capillary electrophoresis with sample stacking induced by moving reaction boundary (MRB) was developed for sensitive determination of oxymatrine (OMT) and matrine (MT) in rat plasma. The experimental conditions were optimized firstly. Below are the optimized experimental conditions: 20 mM sodium formate solution (HCOONa, adjusted to pH 10.70 by ammonia) as sample solution, 3 min 14 mbar sample injection, 40 mM formic buffer (HCOOH-HCOONa, pH 2.60) as stacking buffer, 7 min 14 mbar injection of stacking buffer, 100 mM HCOOH-HCOONa (pH 4.80) as separation buffer, 73 cm capillary (effective length 64 cm), 21 kV voltage, 210 nm wavelength. Under the optimized conditions, higher than 60-fold sensitivity improvement of the stacking was simply achieved as compared with capillary zone electrophoresis, and the detectable limits obtained for OMT and MT were 0.26 and 0.19 μg mL−1, respectively. Then, numerous demonstrations were carefully performed for the methodological validations of OMT and MT in rate plasma, including high specificity of method, good linearity (r = 0.9993 for OMT, r = 0.9991 for MT), fair wide linear concentration range (1.30-65.00 μg mL−1 for OMT, 0.84-42.00 μg mL−1 for MT), low limit of detection (1.03 μg mL−1 for OMT, 0.38 μg mL−1 for MT), less than 5% intra- and inter-day variance value, and higher than 96% recovery of OMT and MT in plasma. The developed method could be used for the trace analyses of OMT and MT in plasma and was finally used for the investigation on pharmacokinetic study of OMT in rat plasma.  相似文献   

20.
A simple and efficient ultrasound-assisted dispersive liquid–liquid microextraction (UA-DLLME) method has been developed for the determination of seven benzodiazepines (alprazolam, bromazepam, clonazepam, diazepam, lorazepam, lormetazepam and tetrazepam) in human plasma samples. Chloroform and methanol were used as extractant and disperser solvents, respectively. The influence of several variables (e.g., type and volume of dispersant and extraction solvents, pH, ultrasonic time and ionic strength) was carefully evaluated and optimized, using an asymmetric screening design 3242//16. Analysis of extracts was performed by ultra-performance liquid chromatography coupled with photodiode array detection (UPLC-PDA). Under the optimum conditions, two reversed-phases, Shield RP18 and C18 columns were successfully tested, obtaining good linearity in a range of 0.01–5 μg mL−1, with correlation coefficients r > 0.996. Quantification limits ranged between 4.3–13.2 ng mL−1 and 4.0–14.8 ng mL−1, were obtained for C18 and Shield RP18 columns, respectively. The optimized method exhibited a good precision level, with relative standard deviation values lower than 8%. The recoveries studied at two spiked levels, ranged from 71 to 102% for all considered compounds. The proposed method was successfully applied to the analysis of seven benzodiazepines in real human plasma samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号