首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study establishes the applicability of using high-performance liquid chromatography (HPLC) with fluorescence detection for the simultaneous determination of malondialdehyde (MDA) and ofloxacin (OFL). The MDA and OFL were separated through a reverse-phase C18 column (250 mm × 4.6 mm) at a flow rate of 1.0 mL min−1 and then detected using a fluorescence detector (excitation: 532 nm; emission: 553 nm). The separation conditions were optimized by varying the concentration and pH of the phosphate buffer and the percentage of organic solvent; the optimal mobile phase was a mixture of 50 mM phosphate buffer (adjusted to pH 5.8 with potassium hydroxide) and methanol (45:55, v/v). The retention times of MDA and OFL were 3.6 and 5.9 min, respectively, with detection limits (at a signal-to-noise ratio of 3) of 0.015 and 4.0 μM, respectively. This method afforded linear responses between the MDA and OFL concentrations and the HPLC peak areas within the ranges 0.15-2.43 μM and 0.06-1.0 mM, respectively. The precisions of the determinations of MDA and OFL, measured in terms of relative standard deviations, were 1.6-5.0% and 1.9-3.6%, respectively, for intra-day assays and 1.0-4.3% and 0.3-1.8%, respectively, for inter-day assays. The average recoveries of MDA and OFL spiked in plasma were 100.4% and 98.8%, respectively. To the best of our knowledge, this paper describes the first practical analytical approach toward simultaneously monitoring the levels of MDA and OFL in plasma. The OFL-induced oxidative stress measured using this method indicated that OFL treatment did not markedly increase the level of MDA.  相似文献   

2.
A rapid technique based on dynamic microwave-assisted extraction coupled with on-line solid-phase extraction of high-performance liquid chromatography (DMAE-SPE-HPLC) has been developed. A TM010 microwave resonance cavity built in the laboratory was applied to concentrate the microwave energy. The sample placed in the zone of microwave irradiation was extracted with 95% acetonitrile (ACN) aqueous solution which was driven by a peristaltic pump at a flow rate of 1.0 mL min−1. The extraction can be completed in a recirculating system in 10 min. When a number of extraction cycles were completed, the extract (1 mL) was diluted on-line with water. Then the extract was loaded into an SPE column where the analytes were retained while the unretained matrix components were washed away. Subsequently, the analytes were automatically transferred from the SPE column to the analytical column and determined by UV detector at 238 nm. The technique was used for determination of organochlorine pesticides (OCPs) in grains, including wheat, rice, corn and bean. The limits of detection of OCPs are in the range of 19-37 ng g−1. The recoveries obtained by analyzing the four spiked grain samples are in the range of 86-105%, whereas the relative standard deviation (R.S.D.) values are <8.7% ranging from 1.2 to 8.7%. Our method was demonstrated to be fast, accurate, and precise. In addition, only small quantities of solvent and sample were required.  相似文献   

3.
A combined system of flow injection on-line dialysis sample pretreatment and high performance liquid chromatographic separation/detection (FID-HPLC) was developed for simultaneous determination of six organic acids (tartaric, malic, lactic, acetic, citric and succinic acids). A sample or mixed standard solution (400 μL) was injected into a donor stream (water) of FID system and was pushed further through a dialysis cell, while an acceptor solution (water) was held in the opposite side of the dialysis membrane. The dialysate containing organic acids in the acceptor solution was then flowed to an injection loop of the HPLC valve, where it was further injected into the HPLC system and analysed under normal HPLC conditions, using a reversed-phase (C18) analytical column and UV detection (210 nm). The order of elution was tartaric, malic, lactic, acetic, citric and succinic acids with the analysis time of 8 min. The FID system could be operated in parallel with HPLC separation, providing sample throughput of 7.5 h−1. Dialysis efficiencies of six organic acids were in range of 4.6-9.5%. Calibration graphs for all the mentioned organic acids were linear over the range of 250-7500 mg L−1. Precisions for all the organic acids were within 5.4%. The proposed system was successfully applied for analysis of some Thai wines. By spiking wine samples with mixed acid standard solutions, the percentage recoveries in range of 84-104 were found. This system has advantages of fast and high degrees of automation for dialysis sample pretreatment, on-line sample separation and dilution, good clean-up for prolongation of life-time of the HPLC column and low consumption of chemicals and materials.  相似文献   

4.
Nasr Y. Khalil 《Talanta》2010,80(3):1251-1256
A fully automated, rapid and highly sensitive HPLC method with automated sample pre-treatment by column-switching system and fluorescence detection has been developed for the trace quantitative determination of the new antidepressant reboxetine (RBX) in human plasma. A simple pre-column derivatization procedure with 7-flouro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-F) reagent was employed. Paroxetine (PXT) was used as an internal standard. Plasma samples containing both RBX and PXT, after filtration, were derivatized by heating with NBD-F in borate buffer of pH 8 at 70 °C for 30 min. The derivatized plasma samples were injected into the HPLC system where an on-line sample clean up was achieved on the pre-treatment column (Co-sense Shim-pack MAYI-ODS) with a washing mobile phase (acetonitrile:2% acetic acid; 40:60, v/v) at a flow rate of 5 mL min−1 for 1 min. After an automated on-line column switching to the analytical Hypersil phenyl 120A column (250 mm × 4.6 mm, 5 μm), the separation of the derivatized RBX and PXT was performed using a mobile phase consisting of sodium acetate buffer (pH 3.5):tetrahydrofuran:acetonitrile (55:35:10, v/v/v) at a flow rate of 2.0 mL min−1. The eluted derivatives were monitored by a fluorescence detector set at an excitation wavelength of 470 nm and an emission wavelength of 530 nm. Under the optimum chromatographic conditions, a linear relationship with good correlation coefficient (r = 0.9995, n = 5) was found between the peak area ratio of RBX to PXT and RBX concentration in the range of 2-500 ng mL−1, with limits of detection and quantification of 0.5 and 1.7 ng mL−1, respectively. The intra- and inter-day precisions were satisfactory; the relative standard deviations were 2.25 and 3.01% for the intra- and inter-day precisions, respectively. The accuracy of the method proved as the mean recovery values were 100.11 ± 2.24% and 100.99 ± 2.98% for the intra- and inter-day assay runs, respectively. The proposed method involved simple and minimum sample preparation procedure and short run-time (<12 min) and therefore it can be applied to the routine therapeutic monitoring and pharmacokinetic studies of RBX.  相似文献   

5.
Sponge-like material was utilized as novel chromatographic media for high throughput analyses. The pore size of the sponge-like material was several dozen micrometer, and was named spongy monolith because it consists of continuous structured copolymers, which was made of poly(ethylene-co-vinyl acetate), such as monolithic materials including silica monoliths and organic polymer monoliths. The spongy monolith was packed into a stainless steel column (100 mm × 4.6 mm I.D.) and evaluated in liquid chromatography (LC) with an on-line column-switching LC concentration system. The results indicate that the packed column could be used with high flow rates and low back pressure (9.0 mL/min at 0.5 MPa). Furthermore, bisphenol A was quantitatively recovered by on-line column-switching LC concentration with the spongy monolithic column. Additionally, the adsorption capacity and physical strength of the media was enhanced via chemical modification of spongy monoliths using glycerol dimethacrylate. The results compared with original spongy monolith demonstrated that a higher adsorption capacity was achieved on a shorter column, and a stable low back pressure was obtained at high throughput elution even with a longer column.  相似文献   

6.
A sensitive and highly selective high-performance liquid chromatography (HPLC) method was developed for the determination of vitamin K homologues including phylloquinone (PK), menaquinone-4 (MK-4) and menaquinone-7 (MK-7) in human plasma using post-column peroxyoxalate chemiluminescence (PO-CL) detection following on-line ultraviolet (UV) irradiation. The method was based on ultraviolet irradiation (254 nm, 15 W) of vitamin K to produce hydrogen peroxide and a fluorescent product at the same time, which can be determined with PO-CL detection. The separation of vitamin K by HPLC was accomplished isocratically on an ODS column within 35 min. The method involves the use of 2-methyl-3-pentadecyl-1,4-naphthoquinone as an internal standard. The detection limits (signal-to-noise ratio = 3) were 32, 38 and 85 fmol for PK, MK-4 and MK-7, respectively. The recoveries of PK, MK-4 and MK-7 were greater than 82% and the inter- and intra-assay R.S.D. values were 1.9-5.4%. The sensitivity and selectivity of this method were sufficient for clinical and nutritional applications.  相似文献   

7.
A fluorimetric liquid chromatographic method for the determination of 5-hydroxyindoles based on the benzylamine derivatization process mediated through an online photocatalytic oxidation has been developed. In this study, we used a photocatalytic column comprising tefzel tubing packed with TiO2-coated glass beads, as a pre-column derivatization reactor. The fluorescence derivatization of 5-hydroxyindoles using benzylamine proceeded during their passage through the reaction column under near-UV irradiation. The 5-hydroxyindole derivatives were separated continuously on a reversed-phase liquid chromatography within 50 min, using 100 mM acetate buffer (pH 4.6)-acetonitrile (72:28, v/v; isocratic elution) containing 3 mM sodium octanesulfonate; the samples were detected fluorimetrically at 465 nm upon excitation at 350 nm. The detection limits (signal-to-noise ratio = 3) of the 5-hydroxyindoles were in the range from 160 to 360 fmol per 5 μL injection. We have applied this method, which requires minimal sample pre-treatment, to the determination of 5-hydroxyindole-3-acetic acid in human urine.  相似文献   

8.
A method based on on-line solid-phase extraction (SPE) coupling to high-performance liquid chromatography (HPLC) for the determination of estrogens has been developed. This method can continuously perform extraction of estrone, estradiol, estriol and diethylstilbestrol from aqueous samples without any other pretreatment, which can then be analyzed by HPLC with a UV detector at 230 nm. A pre-concentration column was adapted with methanol/water for chromatographic separation and two kinds of sorbents were involved, which are octadecyl-bonded silica and cigarette filter. The condition of pH of samples, sample loading flow rate and desorption time were all optimized, and the performances of both two sorbents were satisfactory. The on-line SPE system requires very low maintenance and just involved a switching-valve-filter system and a flow-inject pump, and the operation of the whole SPE-HPLC instrumentation is quite simple. The detection limits for pre-concentrating 50 mL of standard solution using cigarette filter as sorbent ranged from 0.98 to 78.1 ng L−1. The enhancement factors were in the range of 197-326. The recoveries of estrogens spiked in real water samples ranged from 85 to 112%. The precisions for nine replicate measurements of a standard mixture (5.0 μg L−1) were in the range of 1.0-3.4%.  相似文献   

9.
Qiang Fu  Qiuquan Wang 《Talanta》2007,72(4):1248-1254
A newly synthesized alkyl phosphinic acid resin (APAR) was used for on-line preconcentration of trace rare earth elements (REES, lanthanides including yttrium) and then determined by inductively coupled plasma mass spectrometry. REEs in seawater could be on-line concentrated on the APAR packed column (4.6 mm i.d. × 50 mm in length), and eluted from the column with 0.5 mL 0.1 mol L−1 nitric acid within 30 s. An enrichment factor of nearly 400 was achieved for all REEs when the seawater sample volume was 200 mL, while the matrix and coexisting spectrally interfering ions such as barium, tin and antimony could be simultaneously separated. The detection limits of this proposed method for REEs were in the range from 1.43 pg L−1 of holmium to 12.7 pg L−1 of lanthanum. The recoveries of REEs were higher than 97.9%, and the precision of the relative standard deviation (R.S.D., n = 6) was less than 5%. The method has been applied to the determination of soluble REEs in seawater.  相似文献   

10.
Response surface methodology (RSM) was applied to the optimization of on-line solid-phase extraction (SPE) parameters, and an automated system of on-line SPE coupled with high-performance liquid chromatography (HPLC) with fluorescence detection was developed for the determination of puerarin and daidzein in human serum. The human serum sample of 50 μL was injected into a conditioned C18 SPE cartridge, and the matrix was washed out with acetonitrile-KH2PO4-triethylamine buffer (0.01 M, pH 7.4) (3:97, v/v) for 3 min at a flow rate of 0.25 mL/min. Then the target analytes were eluted and transferred to the analytical column. A chromatographic gradient elution was programmed with the mobile phase consisting of acetonitrile and KH2PO4-triethylamine buffer, and the analytes were determined with a fluorescence detector at excitation wavelength of 350 nm and emission wavelength of 472 nm, respectively. The proposed method presented good linear relations (0.85-170 μg/mL for puerarin and 0.2-40 μg/mL for daidzein), satisfactory precision (RSD < 8%), and accredited recovery (92.5-107.8%).  相似文献   

11.
Fang DM  Wu HL  Ding YJ  Hu LQ  Xia AL  Yu RQ 《Talanta》2006,70(1):58-62
Fluoroquinolones or so-called second-generation quinolones, in particular, ofloxacin (OFL), norfloxacin (NOR), and enoxacin (ENO), with therapeutic advantages possess strongly overlapped fluorescence spectra. In this paper, two strategies were proposed for simultaneous direct determination of OFL, NOR and ENO in plasma by combining fluorescence excitation-emission matrix (EEM) with second-order calibration based on the alternating trilinear decomposition algorithm (ATLD) and parallel factor analysis (PARAFAC). The results showed that both algorithms could solve the problem of serious fluorescence spectral overlapping of the sought-for analytes even in the presence of uncalibrated interferents. However, ATLD has advantages of being insensitive to overestimated component number and fast convergence. The results by using ATLD with an estimated component number of five were reasonably acceptable for clinical analysis. The average recoveries of OFL, NOR and ENO in synthetic samples were 99.7 ± 2.4, 101.5 ± 2.4 and 97.3 ± 3.8%, respectively; the average recoveries of OFL, NOR and ENO in complex plasma were 94.3 ± 2.6, 85.6 ± 3.3 and 103.3 ± 3.0%, respectively.  相似文献   

12.
In this study, a continuous linear alcohol derivatization is developed. Reaction of alcohol group (ROH) with benzoyl chloride (BC) is carried out in an on-line system with UV detection. All reaction conditions, as flow rate (FR), ROH/BC molar ratio, wavelength, temperature, microwave (MW) irradiation and reaction coil size (internal diameter and length) were optimized. 0.5 mL min−1, 2.49 [BC]/[ROH], 230 nm, 60 °C or medium power (225 W) when MW irradiation was used and a reactor coil of 159 μL (0.5 mm × 810 mm) were the optimum conditions. The on-line system with microwave irradiation was more efficient than the one with a water bath heating. The developed system reduces analysis time consumption, reagent amounts and this system was used to evaluate the composition of commercial samples of alcohols polyethoxylated (surfactants).  相似文献   

13.
A cloud-point extraction/preconcentration (CPE/P) step is incorporated on-line into a flow injection system which is used to determine low levels of Hg(II) added to natural water samples. The analyte is complexed with dithizone. A solid reagent column (SRC) is used to prepare the reagent on-line by using 5% (v/v) Triton X-100 solution as solvent. The CPE/P is carried out by using the non-ionic surfactant Triton X-100. After obtaining the cloud-point on-line, the surfactant-rich phase containing the complex is collected in a mini column packed with cotton wool. Then, a hot water stream is passed through the column to elute the complex and the absorbance is measured at 500 nm.All the flow and chemical variables are optimized and the enhancement factor for the system is estimated. The calibration is linear over the range 0.05-0.5 μg ml−1, the R.S.D. is 4.8%, the limit of detection (signal:noise = 3) is 0.014 μg ml−1 and the sample throughput is 30 h−1. An open/closed system is used to eliminate the interference of iron(III).  相似文献   

14.
A novel on-line HPLC-DTNB method was developed for the selective determination of biologically important thiols (biothiols) such as l-cysteine (Cys), glutathione (GSH), homocysteine (HCys), N-acetylcysteine (NAC), and 1,4-dithioerythritol (DTE) in pharmaceuticals and tissue homogenates. The biothiols were separated on C18 column using gradient elution, reacted with the postcolumn reagent, DTNB in 0.5% M-β-CD (w/v) solution at pH 8, to form yellow-colored 5-thio-2-nitrobenzoic acid (TNB), and monitored with a PDA detector (λ = 410 nm). With the optimized conditions for chromatography and the post-column derivatization, 40 nM of NAC, 40 nM of Cys, and 50 nM of GSH can be determined. The relative standard deviations of the recommended method were in the range of 3.2–5.4% for 50 μM biothiols. The negative peaks of biothiol constituents were monitored by measuring the increase in absorbance due to TNB chromophore. The detection limits of biothiols at 410 nm (in the range of 0.04–0.58 μM) after post-column derivatization with DTNB + M-β-CD were much lower than those at 205 nm UV-detection without derivatization, and were distinctly lower than those with post-column DTNB alone. The method is rapid, inexpensive, versatile, nonlaborious, uses stable reagents, and enables the on-line qualitative and quantitative estimation of biothiol constituents of biological fluids and pharmaceuticals.  相似文献   

15.
An on-column electrochemical microdetector was used to determine accurately the radial distribution of the mobile phase velocity and of the column efficiency at the exit of three common analytical columns, namely a 100 mm × 4.6 mm C18 bonded silica-based monolithic column, a 150 mm × 4.6 mm column packed with 2.7 μm porous shell particles of C18 bonded silica (HALO), and a 150 mm × 4.6 mm column packed with 3 μm fully porous C18 bonded silica particles (LUNA). The results obtained demonstrate that all three columns are not radially homogeneous. In all three cases, the efficiency was found to be lower in the wall region of the column than in its core region (the central core with a radius of 1/3 the column inner radius). The decrease in local efficiency from the core to the wall regions was lower in the case of the monolith (ca. 25%) than in that of the two particle-packed columns (ca. 35–50%). The mobile phase velocity was found to be ca. 1.5% higher in the wall than in the core region of the monolithic column while, in contrast, it was ca. 2.5–4.0% lower in the wall region for the two particle-packed columns.  相似文献   

16.
The automated method developed for the determination of carotenoids uses 200 μL of serum, which was mixed with 400 μL of tetrahydrofuran, vortexed for 1 min, settled for 10 min, centrifuged for 6 min and the supernatant injected into an automatic solid-phase extraction (SPE) system for cleanup-preconcentration. A 10% water-acetonitrile mobile phase at 1.5 mL min−1 eluted the retained compounds and transferred them on-line to a reversed-phase analytical column for individual separation of the target analytes. Visible detection was performed at 450 and 460 nm. The detection limits for the target analytes were between 3 and 30 ng mL−1; the precision (expressed as relative standard deviation) ranged between 2.83 and 5.06% for repeatability and between 3.80 and 7.40% for within laboratory reproducibility. The total analysis time was 18 min. The proposed method is reliable, robust, and has an excellent potential for high-throughput use in both clinical and research laboratories.  相似文献   

17.
This work presents novel approach in low-pressure chromatography flow systems—two-column Sequential Injection Chromatography (2-C SIC) and its comparison with gradient elution chromatography on the same instrument. The system was equipped with two different chromatographic columns (connected to selection valve in parallel design) for isocratic separation and determination of all components in composed anti-inflammatory pharmaceutical preparation (tablets). The sample was first injected on the first column of length 30 mm where less retained analytes were separated and then the sample was injected on the second column of length 10 mm where more retained analytes were separated. The SIC system was based on a commercial SIChrom™ manifold (8-port high-pressure selection valve and medium-pressure syringe pump with 4 mL reservoir) (FIAlab®, USA) with two commercially available monolithic columns the “first column” Chromolith® Flash RP-18e (25 mm × 4.6 mm i.d. with guard column 5 mm × 4.6 mm i.d.) and the “second column” Chromolith® RP-18e (10 mm × 4.6 mm i.d.) and CCD UV-vis detector USB 4000 with micro-volume 1.0 cm Z flow cell. Two mobile phases were used for analysis (one for each column). The mobile phase 1 used for elution of paracetamol, caffeine and salicylic acid (internal standard) was acetonitrile/water (10:90, v/v, the water part of pH 3.5 adjusted with acetic acid), flow rate was 0.9 mL min−1 (volume 3.0 mL of mobile phase per analysis). The mobile phase 2 used for elution of propyphenazone was acetonitrile/water (30:70, v/v); flow rate was 1.2 mL min−1 (volume 1.5 mL of mobile phase per analysis). Absorbance was monitored at 210 nm. Samples were prepared by dissolving of one tablet in 30% acetonitrile and 10 μL of filtered supernatant was injected on each column (2 × 10 μL). The chromatographic resolution between all compounds was >1.45 and analysis time was 5.5 min under the optimal conditions. Limits of detection were determined at 0.4 μg mL−1 for paracetamol, at 0.5 μg mL−1 for caffeine and at 0.7 μg mL−1 for propyphenazone. The new two-column chromatographic set-up developed as an alternative approach to gradient elution chromatography shows evident advantages (time and solvent reduction more than one-third) as compared with single-column gradient SIC method with Chromolith® Flash RP-18 (25 mm × 4.6 mm i.d. with guard column 5 mm × 4.6 mm i.d.).  相似文献   

18.
Clara-Eugenia Baños 《Talanta》2009,77(5):1597-6318
A rapid and straightforward continuous solid-phase extraction system has been developed for in situ derivatization and pre-concentration of carbonyl compounds in aqueous samples. Initially 2,4-dinitrophenylhydrazine, the derivatizing agent, was adsorbed on a C18 mini-column and then 15-ml of sample were continuously aspirated into the flow system, where the derivatization and pre-concentration of the analytes (low-molecular mass aldehydes) were performed simultaneously. Following elution, 20 μl of the extract were injected into a LC-DAD system, in which hydrazones were successfully separated in 12 min on a RP-C18 column using a linear gradient mobile phase of acetonitrile-water of 60-100% acetonitrile for 8 min, flowing at 0.5 ml/min. The whole analytical process can be accomplished within ca. 35 min. Under optimum conditions, limits of detection were obtained between 0.3 and 1.0 μg/l and RSDs (inter-day precision) from 1.2 to 4.6%. Finally, some applications on water samples are presented with recoveries ranged from 95.8 to 99.4%.  相似文献   

19.
In this work, we have developed a novel hybrid two-dimensional counter-current chromatography and liquid chromatography (2D CCC × LC) system for the continuous purification of arctiin from crude extract of Arctium lappa. The first dimensional CCC column has been designed to fractionalize crude complex extract into pure arctiin effluent using a one-component organic/salt-containing system, and the second dimensional LC column has been packed with macroporous resin for on-line adsorption, desalination and desorption of arctiin which was effluent purified from the first CCC dimension. Thus, the crude arctiin mixture has been purified efficiently and conveniently by on-line CCC × LC in spite of the use of a salt-containing solvent system in CCC separation. As a result, high purity (more than 97%) of arctiin has been isolated by repeated injections both using the ethyl acetate–8% sodium chloride aqueous solution and butanol–1% sodium chloride aqueous solution. By contrast with the traditional CCC processes using multi-component organic/aqueous solvent systems, the present on-line CCC × LC process only used a one-component organic solvent and thus the solvent is easier to recover and regenerate. All of used solvents such as ethyl acetate, n-butanol and NaCl aqueous solution are low toxicity and environment-friendly. Moreover, the lower phase of salt-containing aqueous solution used as mobile phase, only contained minor organic solvent, which will save much organic solvent in continuous separation. In summary, our results indicated that the on-line hybrid 2D CCC × LC system using one-component organic/salt-containing aqueous solution is very promising and powerful tool for high-throughput purification of arctiin from fruits of A. lappa.  相似文献   

20.
A method using an on-line solid phase extraction (SPE) and liquid chromatography with electrospray-tandem mass spectrometry (LC-ES-MS/MS) for the determination of flunitrazepam (FM2) and 7-aminoflunitrazepam (7-aminoFM2) in urine was developed. A mixed mode Oasis HLB SPE cartridge column was utilized for on-line extraction. A reversed phase C18 LC column was employed for LC separation and MS/MS was used for detection. Sample extraction, clean-up and elution were performed automatically and controlled by a six-port valve. Recoveries ranging from 94.8 to 101.3% were measured. For both 7-aminoFM2 and FM2, dual linear ranges were determined from 20 to 200 and 200-2000 ng/ml, respectively. The detection limit for each analyte based on a signal-to-noise ratio of 3 ranged from 1 to 3 ng/ml. The intra-day and inter-day precision showed coefficients of variance (CV) ranging from 4.6 to 8.5 and 2.6-9.2%, respectively. The applicability of this newly developed method was examined by analyzing several urine samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号