首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Yong D  Liu C  Yu D  Dong S 《Talanta》2011,84(1):7-12
We reported a rapid toxicity assay method using electrochemical biosensor for pesticides, Escherichia coli (E. coli) was taken as a model microorganism for test. In this method, we adopted ferricyanide instead of natural electron acceptor O2, and then microbial oxidation was substantially accelerated. Toxicity assays measured the effect of toxic materials on the metabolic activity of microorganisms. The current signal of ferrocyanide produced from the metabolism was proven to be directly related to the toxicity, which could be amplified by ultramicroelectrode array (UMEA). The ratio of the electrochemical signals, recorded in the presence and absence of toxin, provided an index of inhibition. Accordingly, a direct toxicity assessment (DTA) based on chronoamperometry was proposed to detect the effect of toxic chemicals on microorganisms. 3,5-Dichlorophenol (DCP) was taken as the reference toxicant, its IC50 was estimated to be 8.0 mg/L. Three pesticides were examined using this method. IC50 values of 6.5 mg/L for Ametryn, 22 mg/L for Fenamiphos and 5.7 mg/L for Endosulfan were determined and in line with EC50 values reported in the literature. Atomic force microscopy (AFM) was also used for morphology characterization of E. coli induced by three pesticides. These results confirmed the present electrochemical method used is reliable. In addition, the electrochemical method is a sensitive, rapid and inexpensive way for toxicity assays of pesticides.  相似文献   

2.
An epoxy-based monolith has been developed for use as hydrophilic support in bioseparation. This monolith is produced by self-polymerization of polyglycerol-3-glycidyl ether in organic solvents as porogens at room temperature within 1 h. One receives a highly cross-linked structure that provides useful mechanical properties. The porosity and pore diameter can be controlled by varying the composition of the porogen. In this work, an epoxy-based monolith with a high porosity (79%) and large pore size (22 μm) is prepared and used in affinity capturing of bacterial cells. These features allow the passage of bacterial cells through the column. As affinity ligand polymyxin B is used, which allows the binding of gram-negative bacteria. The efficiency of the monolithic affinity column is studied with Escherichia coli spiked in water. Bacterial cells are concentrated on the column at pH 4 and eluted with a recovery of 97 ± 3% in 200 μL by changing the pH value without impairing viability of bacteria. The dynamic capacity for the monolithic column is nearly independent of the flow rate (4 × 109 cells/column). Thereby, it is possible to separate and enrich gram-negative bacterial cells, such as E. coli, with high flow rates (10 mL/min) and low back pressure (<1 bar) in a volume as low as 200 μL compatible for real-time polymerase chain reaction, microarray formats, and biosensors.  相似文献   

3.
The aim of this paper was to demonstrate a fluorescence measurement method for rapid detection of two bacterial count by using water-soluble quantum dots (QDs) as a fluorescence marker, and spectrofluorometer acted as detection apparatus, while Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were as detection target bacteria. Highly luminescent water-soluble CdSe QDs were first prepared by using thioglycolic acid (TGA) as a ligand, and were then covalently coupled with target bacteria. The bacterial cell images were obtained using fluorescence microscopy. Our results showed that CdSe QDs prepared in water phase were highly luminescent, stable, and successfully conjugated with E. coli and S. aureus. The fluorescence method could detect 102-107 CFU/mL total count of E. coli and S. aureus in 1-2 h and the low detection limit is 102 CFU/mL. A linear relationship of the fluorescence peak intensity and log total count of E. coli and S. aureus have been established using the equation Y = 118.68X − 141.75 (r = 0.9907).  相似文献   

4.
This study addresses the high power impulse magnetron sputtering (HIPIMS) deposition of Ag-nanoparticle films on polyester and the comparison with films deposited by direct current pulsed magnetron sputtering (DCMSP). The first evidence is presented for the Escherichia coli bacterial inactivation by HIPIMS sputtered polyester compared to Ag-polyester sputtered by DCMSP. HIPIMS layers were significantly thinner than the DCMSP sputtered layers needing a much lower Ag-loading to inactivate E. coli within the same time scale. The Ag-nanoparticle films sputtered by DCMSP at 300 mA for 160 s was observed to inactivate completely E. coli within 2 h having a content of 0.205% Ag wt%/polyester wt%. HIPIMS-sputtered at 5 A for 75 s led to complete E. coli bacterial inactivation also within 2 h having a content Ag 0.031% Ag wt%/polyester wt%. The atomic rate of deposition with DCMSP is 6.2 × 1015 atoms Ag/cm2 s while with HPIMS this rate was 2.7 × 1015 atoms Ag/cm2 s. The degree of ionization of Ag+/Ag2+ and Ar+/Ar2+ was proportional to the target current applied during HIPIMS-sputtering as determined by mass spectroscopy. These experiments reveal significant differences at the higher end of the currents applied during HIPIMS sputtering as illustrated by the ion-flux composition. X-ray photoelectron spectroscopy (XPS) was used to determine the surface atomic concentration of O, Ag, and C on the Ag-polyester. These surface atomic concentrations were followed during the E. coli inactivation time providing the evidence for the E. coli oxidation on the Ag-polyester. X-ray diffraction shows Ag-metallic character for DCMSP sputtered samples for longer times compared to the Ag-clusters sputtered by HIPIMS leading to Ag-clusters aggregates. Ag-nanoparticle films on polyester sputtered by HIPIMS contain less Ag and are thinner compared to Ag-nanoparticle films sputtered by DCMSP.  相似文献   

5.
Wang C  Han D  Wang Z  Zang X  Wu Q 《Analytica chimica acta》2006,562(2):190-196
A new amperometric method was developed for rapid detection of Escherichia coli (E. coli) density using a bienzyme biosensor. The bienzyme biosensor was fabricated based on the covalent immobilization of laccase and horseradish peroxidase (HRP) at indium tin oxide (ITO) electrode by (3-aminopropyl) triethoxysilane (APTES) monolayer. The bienzyme biosensor showed a high sensitivity in determination of the polyphenolic compounds, which was microbially generated from the salicylic acid (SA) added into the culture medium during the course of E. coli metabolism. Since the amount of polyphenolic compounds depends on E. coli density, the bienzyme biosensor was applied for the rapid and high sensitive detection of E. coli density after the E. coli solution was incubated in culture medium with salicylic acid for 2.5 h at 37 °C. By chronoamperometry, the amplified response current was obtained at the bienzyme biosensor, due to the substrate recycling of the polyphenolic compounds driven by bienzyme-catalyzed oxidation and electrochemical reduction. The amplified response current at the biosensor was linear with the E. coli density ranging from 1.6 × 103 to 1.0 × 107 cells/mL. The bienzyme biosensor could detect the E. coli density with a detection limit of 9.7 × 102 cells/mL within 3 h.  相似文献   

6.
A direct recovery of recombinant nucleocapsid protein of Nipah virus (NCp-NiV) from crude Escherichia coli (E. coli) homogenate was developed successfully using a hydrophobic interaction expanded bed adsorption chromatography (HI-EBAC). The nucleic acids co-released with the recombinant protein have increased the viscosity of the E. coli homogenate, thus affected the axial mixing in the EBAC column. Hence, DNase was added to reduce the viscosity of feedstock prior to its loading into the EBAC column packed with the hydrophobic interaction chromatography (HIC) adsorbent. The addition of glycerol to the washing buffer has reduced the volume of washing buffer applied, and thus reduced the loss of the NCp-NiV during the washing stage. The influences of flow velocity, degree of bed expansion and viscosity of mobile phase on the adsorption efficiency of HI-EBAC were studied. The dynamic binding capacity at 10% breakthrough of 3.2 mg/g adsorbent was achieved at a linear flow velocity of 178 cm/h, bed expansion of two and feedstock viscosity of 3.4 mPa s. The adsorbed NCp-NiV was eluted with the buffer containing a step gradient of salt concentration. The purification of hydrophobic NCp-NiV using the HI-EBAC column has recovered 80% of NCp-NiV from unclarified E. coli homogenate with a purification factor of 12.5.  相似文献   

7.
Rozhok S  Holz R 《Talanta》2005,67(3):538-542
Selective attachment of Escherichia coli K-12 bacterial cells to charged gold surfaces was demonstrated. Electrostatic binding of E. coli K-12 bacterial cells to positively charged surfaces was observed starting at +750 mV. The binding of E. coli K-12 cells to positively charged gold surfaces is proposed to occur due to long-range electrostatic interactions between the negatively charged O-chain of lipopolysaccharide (LPS) molecules protruding the bacterial cell body and the electrode surface. Removing LPS alters the cellular surface charge and results in cellular attachment to negatively charged surfaces. Thus, applying an electrical potential allows for the direct, real time detection of live, dead or damaged bacterial cells. The attachment of E. coli K-12 bacterial cells to surfaces with an applied potential substantiates the hypothesis that an electrostatic interaction is responsible for the binding of bacterial cells to positively charged molecular assemblies on surfaces used for building bacterial microarrays.  相似文献   

8.
Yuxiao Cheng 《Talanta》2009,77(4):1332-95
A rapid, specific and sensitive method for assay of Escherichia coli (E. coli) using biofunctional magnetic nanoparticles (BMNPs) in combination with adenosine triphosphate (ATP) bioluminescence was proposed. The BMNPs were fabricated by immobilizing a specific anti-E. coli antibody on the surface of amine-functionalized magnetic nanoparticles (about 20 nm in diameter), and then was applied to capture the target bacteria E. coli from samples. The BMNPs exhibited high capture efficiency to E. coli. Transmission electron microscope (TEM) images showed that the BMNPs were bound to the surface of entire E. coli cells. The target bacteria became magnetic so that could be isolated easily from the sample solution by employing an external magnetic field. The concentration of E. coli captured by the BMNPs was then detected by an ATP bioluminescence method. The optimization of ATP measurement was carried out to improve the detection sensitivity. The proposed method was applied to detect the E. coli inoculated into pasteurized milk with low detection limit (20 cfu/mL) and short detection time (about 1 h).  相似文献   

9.
Food poisoning causes untold discomfort to many people each year. One of the primary culprits in food poisoning is Escherichia coli O157:H7. While most cases cause intestinal discomfort, up to 7% of the incidences lead to a severe complication called hemolytic uremic syndrome which may be fatal. The traditional method for detection of E. coli O157:H7 in cases of food poisoning is to culture the food matrices and/or human stool. Additional performance-based antibody methods are also being used. The NRL array biosensor was developed to detect multiple antigens in multiple samples with little sample pretreatment in under 30 min. An assay for the specific detection of E. coli O157:H7 was developed, optimized and tested with a variety of spiked food matrices in this study. With no sample pre-enrichment, 5 × 103 cells mL−1 were detected in buffer in less than 30 min. Slight losses of sensitivity (1-5 × 10−4 cell mL−1) but not specificity occur in the presence of high levels of extraneous bacteria and in various food matrices (ground beef, turkey sausage, carcass wash, and apple juice). No significant difference was observed in the detection of E. coli O157:H7 in typical culture media (Luria Broth and Tryptic Soy Broth).  相似文献   

10.
Effective bacteria detection and quantification are essential prerequisite for the prevention and treatment of infectious diseases. Herein, we report a method for the detection and quantification of Escherichia coli (E. coli).N-Methylimidazolium modified magnetic particles (MIm-MPs) are synthesized successfully and used as an efficient magnetic material for the isolation and concentration of E. coli. The factors including pH of binding buffer, concentration of elution buffer and elution time which may affect the capture and elution efficiencies are optimized. The linear correlation between bacteria concentration and peak area of polymerase chain reaction (PCR) product analyzed by capillary electrophoresis (CE) is determined. Rapid preconcentration of trace amount of E. coli (101 cfu mL−1) in large volume of aqueous sample (500 mL) is achieved, and the capture efficiency can reach 99%. The quantification of bacteria in large volume of spiked tap water and mineral water samples is realized. The recoveries for different concentrations of E. coli in tap and mineral water samples are in the range between 83% and 93%. The results demonstrate that this MIm-MPs-PCR-CE method can be applied to detect and quantify bacteria in real samples.  相似文献   

11.
Molecular beacons (MBs) are oligonucleotide probes that fluoresce upon hybridization. The development of a real-time polymerase chain reaction (PCR) assay to detect the presence of Escherichia coli using these fluorogenic reporter molecules is reported. MBs were designed to recognize a 19-bp region of the uid A gene, coding for an enzyme β-glucuronidase. The specificity of the MB-based PCR assay was evaluated for various E. coli strains as well as bacteria species that are present in nature. The capability of the assay to detect E. coli in drinking water and produce was demonstrated. Positive detection of E. coli was demonstrated when >101 CFU mL−1 (colony forming unit) was present in the water samples and fresh produce after 18 h of enrichment. These assays could be carried out entirely in sealed PCR tubes, enabling rapid and semiautomated detection of E. coli in food and environmental samples.  相似文献   

12.
Two patterns of signal amplification lateral flow immunoassay (LFIA), which used anti-mouse secondary antibody-linked gold nanoparticle (AuNP) for dual AuNP-LFIA were developed. Escherichia coli O157:H7 was selected as the model analyte. In the signal amplification direct LFIA method, anti-mouse secondary antibody-linked AuNP (anti-mouse-Ab-AuNP) was mixed with sample solution in an ELISA well, after which it was added to LFIA, which already contained anti-E. coli O157:H7 monoclonal antibody-AuNP (anti-E. coli O157:H7-mAb-AuNP) dispersed in the conjugate pad. Polyclonal antibody was the test line, and anti-mouse secondary antibody was the control line in nitrocellulose (NC) membrane. In the signal amplification indirect LFIA method, anti-mouse-Ab-AuNP was mixed with sample solution and anti-E. coli O157:H7-mAb-AuNP complex in ELISA well, creating a dual AuNP complex. This complex was added to LFIA, which had a polyclonal antibody as the test line and secondary antibody as the control line in NC membrane. The detection sensitivity of both LFIAs improved 100-fold and reached 1.14 × 103 CFU mL−1. The 28 nm and 45 nm AuNPs were demonstrated to be the optimal dual AuNP pairs. Signal amplification LFIA was perfectly applied to the detection of milk samples with E. coli O157:H7 via naked eye observation.  相似文献   

13.
In previous studies we have developed a simple electrokinetically-controlled lab-on-a-chip for heterogeneous immunoassay. In that method, all the sequential operations in an immunoassay, such as reagent loading and washing, were performed automatically by electrokinetically controlling the flow in an H-shaped microchannel. Here, we demonstrated further development of a high-throughput immunoassay microfluidic chip, and the application of the new immunoassay microfluidic chip in assaying human serum. The microfluidic immunoassay analyzed ten samples in parallel in 22 min. Bacterial antibodies in samples were captured by antigens pre-patterned on the bottom wall of a microchannel and then bound with TRITC-labeled detection antibodies to generate fluorescent signals. With optimized surface concentration of antigen, the assay detected Escherichia coli O157:H7 antibody and Helicobacter pylori antibody from buffer solutions in concentration ranges of 0.02-10 μg mL−1 and 0.1-50 μg mL−1, respectively. Human sera that were E. coli-positive or H. pylori-positive were accurately distinguished from respective negative controls. Moreover, the two antibodies, anti-E. coli and anti- H. pylori antibodies, could be simultaneously detected from human serum. This electrokinetically-controlled immunoassay shows an excellent potential for efficiently detecting multiple pathogenic infections in clinical environments.  相似文献   

14.
Li K  Lai Y  Zhang W  Jin L 《Talanta》2011,84(3):607-613
A Fe2O3@Au core/shell nanoparticle-based electrochemical DNA biosensor was developed for the amperometric detection of Escherichia coli (E. coli). Magnetic Fe2O3@Au nanoparticles were prepared by reducing HAuCl4 on the surfaces of Fe2O3 nanoparticles. This DNA biosensor is based on a sandwich detection strategy, which involves capture probe immobilized on magnetic nanoparticles (MNPs), target and reporter probe labeled with horseradish peroxidase (HRP). Once magnetic field was added, these sandwich complexes were magnetically separated and HRP confined at the surfaces of MNPs could catalyze the enzyme substrate and generate electrochemical signals. The biosensor could detect the concentrations upper than 0.01 pM DNA target and upper than 500 cfu/mL of E. coli without any nucleic acid amplification steps. The detection limit could be lowered to 5 cfu/mL of E. coli after 4.0 h of incubation.  相似文献   

15.
Arnica montana preparations have been used in Europe for centuries to treat skin disorders. Among the biologically active ingredients in the flower heads of the plant are sequiterpenes, flavonoids and phenolic acids. For the simultaneous determination of compounds belonging to the latter two groups a micellar electrokinetic capillary chromatography (MEKC) method was developed and validated. By using an electrolyte solution containing 50 mM borax, 25 mM sodium dodecyl sulfate and 30% of acetonitrile the separation of seven flavonoids and four caffeic acid derivatives was feasible in less than 20 min. The optimized system was validated for repeatability (σrel ≤ 4.4%), precision (inter-day σrel ≤ 8.13%, intra-day σrel ≤ 4.32%), accuracy (recovery rates from 96.8 to 102.4%), sensitivity (limit of detection (LOD) ≤ 4.5 μg mL−1) and linearity (R2 ≥ 0.9996), and then successfully applied to assay several plant samples. In all of them the most dominant flavonoid was found to be quercetin 3-O-glucuronic acid, whereas 3,5-dicaffeoylquinic acid was the major phenolic acid; the total content of flavonoids and phenolic acids varied in the samples from 0.60 to 1.70%, and 1.03 to 2.24%, respectively.  相似文献   

16.
Abuknesha RA  Darwish F 《Talanta》2005,65(2):343-348
A tandem technique for the detection of very low levels E. coli within about 2 h is demonstrated. The technique couples the widely employed microbial enzymatic detection methods with an immunoassay step. The bacterial marker enzyme, E. coli β-D-galactosidase, was used in conjunction with synthetic enzyme substrates to produce products that could be measured with a highly sensitive enzyme-labelled immunosorbent assay (ELISA). The commercially available 4-methylumbelliferyl-β-D-galactoside and a newly prepared substrate, 4-methylcoumarin-3-propionate-7-O-β-D-galactoside, were used with an ELISA for 7-hydroxy-4-methylcoumarin to demonstrate the detection of low levels of E. coli. The 2 h test indicates that a few viable bacteria cells could be detected by the tandem procedure. The end point of the test is an ELISA with colorimetric measurement step. The novel approach retains the essential features of the microbial enzymatic detection procedures and provides a highly sensitive detection system that can be used for rapid screening or quantification of viable microbial cells in water samples. The tandem test is generic for commonly employed glycosidases and other marker enzymes for which 4-methylumbillerone substrates are available.  相似文献   

17.
A fast capillary zone electrophoresis (CZE) method has been developed for the determination of four flavonoids (liquiritin, licoisoflavone A, licochalconel A and calycosin) in Glycyrrhizae radix. After a series of optimization experiments, 100 mM borate buffer (pH 10.5), 30 kV applied voltage and 35 °C temperature were selected. The contents of four flavonoids in cultivated and wild crude drugs of Glycyrrhizae radix with different growth periods from one to four years, collected from different areas were successfully determined within 8 min, with satisfactory repeatability and recovery.  相似文献   

18.
The adhesion energies between pathogenic Listeriamonocytogenes EGDe to a model surface of silicon nitride were quantified using atomic force microscopy (AFM) in water for cells grown in pure media (as the control) and in media of four different ionic strengths of added NaCl (IS of 0.05 M, 0.1 M, 0.3 M and 0.5 M NaCl). The physiochemical properties of L. monocytogenes EGDe surface brushes were shown to have a strong influence on the adhesion of the microbe to the silicon nitride surface. The transitions in the adhesion energies, physiochemical properties, and the structure of bacterial surface polyelectrolyte brushes were observed for the cells grown in the media of 0.1 M added NaCl. Our results suggested that the highest long-range electrostatic repulsion which was partially balanced by the Liftshitz-van der Waals attraction for the cells grown at 0.1 M was responsible for the highest energy barrier to adhesion for these cells as predicted by the soft-particle analysis of DLVO theory and the lower adhesion measured by AFM.  相似文献   

19.
The key factors of enzymatic lysis of cells are the interaction between the enzyme and the cell - catalytic and non-catalytic adsorption of enzyme on cell surface. Here, the studies of lysis of intact Escherichia coli cells by chicken egg white lysozyme were performed. It was found that the ionic strength has a dual effect onto the system. On the one hand, the desorption constant of the enzyme increases with the increase of the solution ionic strength, which results in a better enzyme performance. On the other hand, due to the higher osmosis, the cell lysis rate decreases with the increasing of ionic strength of the system. It was found that pH 8.6 and 30 mM NaCl are optimal conditions for lysis of E. coli cells by lysozyme.  相似文献   

20.
Molybdate was examined as a complex-forming additive to the CE background electrolytes (BGE) to affect the selectivity of separation of polyhydric phenols such as flavonoids (apigenin, hyperoside, luteolin, quercetin and rutin) and hydroxyphenylcarboxylic acids (ferulic, caffeic, p-coumaric and chlorogenic acid). Effects of the buffer concentrations and pH and the influence of molybdate concentration on the migration times of the analytes were investigated. In contrast to borate (which is a buffering and complex-forming agent generally used in CE at pH ≥9) molybdate forms more stable complexes with aromatic o-dihydroxy compounds and hence the complex-formation effect is observed at considerably lower pH. Model mixtures of cinnamic acid, ferulic acid, caffeic acid and 3-hydroxycinnamic acid were separated with 25 mM morpholinoethanesulfonic acid of pH 5.4 (adjusted with Tris) containing 0.15 mM sodium molybdate as the BGE (25 kV, silica capillary effective length 45 cm × 0.1 mm I.D., UV-vis detection at 280 nm). With 25 mM 2-hydroxy-3-[4-(2-hydroxyethyl)-1-piperazinyl]propanesulphonic acid/Tris of pH* 7.4 containing 2 mM sodium molybdate in aqueous 25% (v/v) methanol as the BGE mixtures of all the above mentioned flavonoids, p-coumaric acid and chlorogenic acid could be separated (the same capillary as above, UV-vis detection at 263 nm). The calibration curves (analyte peak area versus concentration) were rectilinear (r > 0.998) for ≈8-35 μg/ml of an analyte (with 1-nitroso-2-naphthol as internal standard). The limit of quantification values ranged between 1.1 mg l−1 for p-coumaric acid and 2.8 mg l−1 for quercetin. The CE method was employed for the assay of flavonoids in medicinal plant extracts. The R.S.D. values ranged between 0.9 and 4.7% (n = 3) when determining luteolin (0.08%) and apigenin (0.92%) in dry Matricaria recutita flowers and rutin (1.03%) and hyperoside (0.82%) in dry Hypericum perforatum haulm. The recoveries were >96%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号