首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes two different approaches for increasing the sensitivity for the analysis of ceftiofur by capillary electrophoresis (CE). Two different techniques based on the introduction of an enlarged volume of sample, namely large volume sample stacking (LVSS) and in-line solid phase extraction (SPE) were studied and compared. LVSS allowed the on-column electrophoretic preconcentration of ceftiofur without modification of the separation capillary. In-line SPE-CE was developed by using a home-made microcartridge that was filled with a reversed-phase sorbent (C18). The microcartridge was coupled in-line near the inlet of the separation capillary. LVSS and in-line SPE-CE allowed automated operation and improved sensitivity for the analysis of ceftiofur with respect to conventional CE. When environmental water samples were analyzed, an additional pretreatment step based on off-line SPE was necessary in both cases to further decrease the detection limits. In terms of sensitivity for the determination of ceftiofur in river water samples, the combination of off-line SPE with in-line SPE-CE was found the most sensitive with a detection limit of 10 ng L−1, whereas the method based on the use of off-line SPE with LVSS presented a detection limit of 100 ng L−1.  相似文献   

2.
In this study, the suitability of solid‐phase extraction (SPE) coupled in‐line to CE with UV–Vis detection was evaluated for the preconcentration and separation of diluted solutions of five pharmaceuticals compounds: benzafibrate, piroxicam, diclofenac sodium, naproxen and clofibric acid. An SPE analyte concentrator containing Oasis® HLB sorbent was constructed without frits and placed near the inlet end of the separation capillary. Different parameters such as sample pH, composition and volume of the elution plug and sample loading time were studied in order to obtain the maximum preconcentration factors. The LODs reached for standard samples were in the range 0.06–0.5 ng/mL with good reproducibility, and the developed strategy provides sensitivity enhancement factors around 14 000‐fold in peak area and 5900‐fold in peak height compared with the normal hydrodynamic injection. Finally, river water samples fortified with the pharmaceutical compounds were analyzed by the developed in‐line SPE‐CE‐UV method in order to show the potential of the methodology for the analysis of environmental aquatic samples. For these samples, high values of relative recoveries, between 73–107% and 79–103% for two concentration levels, 5 and 25 ng/mL, respectively, were obtained and LODs ranged between 0.19 and 1 ng/mL.  相似文献   

3.
On-line coupling of SPE and CE-MS for peptide analysis   总被引:1,自引:0,他引:1  
An on-line SPE-CE-MS system has been developed for the analysis of peptides. Analytes are preconcentrated using a C(18) microcolumn (5 x 0.5 mm id), and then introduced into the CE system via a valve interface. The CE system with a Polybrene-poly(vinylsulfonate) bilayer coated capillary is combined with an ion-trap mass spectrometer via ESI using a coaxial sheath-liquid sprayer. The on-line coupling of the SPE and CE step by the valve interface is advantageous because it allows an independent functioning of the system parts. Optimization of the SPE-CE system was performed using UV detection. Subsequently, the SPE-CE system has been coupled to the ion-trap mass spectrometer. Test solutions with enkephalin peptides (50 ng/mL) were used for evaluation of system performance. Repeatability of effective mobility and peak area ratio of the two enkephalins were within 1.2% and 9% RSD, respectively. The analysis of 1:1 v/v diluted cerebrospinal fluid samples spiked with enkephalin peptides showed detection limits (S/N = 3) in the range of 1.5-3 ng/mL (around 5 nM), which were similar to those obtained for enkephalin test solutions. Moreover, the potential of the on-line SPE-CE-MS system was demonstrated by the analysis of a cytochrome C digest. Some hydrophilic peptides did not show sufficient retention on the SPE column, and were lost during preconcentration. Nonetheless, positive identification of the protein was achieved, indicating the feasibility of the system for proteomics.  相似文献   

4.
A new frontal electroelution approach that can be used for the preconcentration of amino acids in in-line solid-phase extraction-capillary electrophoresis (SPE-CE) has been developed. A single capillary was employed featuring a short monolithic SPE column created inside the capillary via photo-initiated, free-radical polymerisation of 3-sulfopropyl methacrylate and butyl methacrylate monomers. A weak electrolyte of dilute H2SO4, pH 2.9, was found to promote adsorption of the amino acids onto the SPE column. Elution of the amino acids was achieved using a dual solvation/ion-exchange transient boundary mobilised via EOF by using a strong electrolyte containing 62.5 mM ethylenediamine, pH 2.9 with H2SO4 and 40% (v/v) acetonitrile. Using these two electrolytes, tryptophan was adsorbed onto the SPE column in weak electrolyte and eluted via a frontal electroelution mechanism in the strong electrolyte. Injections up to 20 min, corresponding to over 14 column volumes (or 1400% of the capillary volume) of sample provided quantitative extraction of tryptophan from the weak electrolyte and were eluted without any loss in efficiency. This represents a practical increase of approximately 300-fold when compared to a typical hydrodynamic injection occupying 5% of the capillary volume.  相似文献   

5.
Solid-phase extraction (SPE) procedures for cleanup and preconcentration followed by HPLC-UV method were investigated for the simultaneous determination of seven low-dosed pesticides in saline concentrates for hemodialysis. The target compounds were ametryn, desmetryn, prometryn, terbutryn, molinate, triallate and butylate. Polyethylene (three different types), teflon, polyurethane and polystyrene, in powder form, were investigated as adsorbents for solid-phase extraction of the analytes from the saline samples. Quantification was performed at 222 nm and the analytes were separated on a LiChrosorb RP-18 (5 μm, 125 mm × 4 mm i.d.) column using gradient elution with water/acetonitrile as mobile phase. The duration each chromatographic run was 18 min including column reconditioning. The efficiency of the different SPE substrates for retaining the analytes from the highly concentrated saline (HCS) samples was discussed. The best performance was achieved with polystyrene as SPE material considering preconcentration factor, precolumn clogging, reusing capability and similarity between the mobile phases for SPE and HPLC procedures. Analyte concentrations as low as 1 μg L−1 could be determined in spiked HCS samples after preconcentration on polystyrene SPE precolumns. Recoveries between 98.7 and 102.2% were obtained from commercial spiked samples. Detection limits ranging from 4.8 (for prometryn) to 46 μg L−1 (for butylate) were calculated (without preconcentration). The within-day relative standard deviations (n = 9) ranged from 2.3 to 4.8%.  相似文献   

6.
Li Zhu 《Talanta》2010,80(5):1873-159
In this paper, a solid-phase extraction (SPE) method based on mixed hemimicelles of cetyltrimethyl ammonium bromide (CTAB) on silica-coated magnetic nanoparticles (MNPs) is developed for extraction and preconcentration of compounds from the biological samples. We selected rhein and emodin which are the major active anthraquinones of rhubarb as model analytes. A high performance liquid chromatography-fluorescence detection (HPLC/FLD) method was developed for the determination of rhein and emodin in urine and serum samples. The main factors influencing the extraction efficiency including the amount of surfactant, the concentration of MNPs, the shaking time and the desorption ability of organic solvents were investigated and optimized. No interferences were caused by proteins or endogenous compounds in urine and serum samples. Good linearities (r2 > 0.9995) for all calibration curves were obtained, and the limits of detection (LODs) for rhein and emodin were 0.2 and 0.5 ng/mL in urine samples and 7 and 10 ng/mL in serum samples, respectively. Satisfactory recoveries (92.76-109.90% and 97.53-107.72% for rhein and emodin) in the biological matrices were achieved.  相似文献   

7.
An analytical technique of in-line coupling headspace liquid-phase microextraction (HS-LPME) with capillary electrophoresis (CE) was proposed to determine volatile analytes. A special cover unit of the sample vial was adopted in the coupling method. To evaluate the proposed method, phenols were used as model analytes. The parameters affecting the extraction efficiency were investigated, including the configuration of acceptor phase, kind and concentration of acceptor solution, extraction temperature and time, salt-out effect, sample volume, etc. The optimal enrichment factors of HS-LPME were obtained with the sample volume of about half of sample vials, which were confirmed by both the theoretical prediction and experimental results. The enrichment factors were obtained from 520 to 1270. The limits of detection (LODs, S/N = 3) were in the range from 0.5 to 1 ng/mL each phenol. The recoveries were from 87.2% to 92.7% and the relative standard deviations (RSDs) were lower than 5.7% (n = 6). The proposed method was successfully applied to the quantitative analysis of the phenols in tap water, and proved to be a simple, convenient and reliable sample preconcentration and determination method for volatile analytes in water samples.  相似文献   

8.
Injection-port derivatization combined with solid-phase extraction (SPE) was developed and applied for the first time to determine five types of fecal sterols (coprostanol, cholestanol, epicholestanol, epicoprostanol and cholesterol) with gas chromatography–mass spectrometry (GC–MS). In this method, silylation of fecal sterols was performed with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) at GC injection-port. The factors influential to this technique such as injection-port temperature, purge-off time, derivatization reagent (BSTFA) volume, and the type of organic solvent were investigated. In addition, the conditions of SPE (including the type of SPE cartridge, the type of elution organic solvent) were also studied. After SPE followed by injection-port silylation by GC–MS, good linearity of analytes was achieved in the range of 0.02–10 ng/mL with coefficients of determination, R2 > 0.995. Good reproducibility was obtained with relative standard deviation less than 19.6%. The limits of detection ranged from 1.3 ng/mL to 15 ng/mL (S/N = 3) in environmental water samples. Compared with traditional off-line silylation of fecal sterols performed with water bath (60 °C, 30 min), this injection-port silylation method is much simpler and convenient. The developed method has been successfully applied for the analysis of fecal sterols from real environmental water samples.  相似文献   

9.
For the first time, an automatic sample pre-treatment/detection method is proposed for the multiclass determination of UV filters (namely, benzophenone-3, ethylhexylmetoxycinnamate, butylmethoxydibenzoylmethane and homosalate) in environmental samples. The new methodology comprises in-line solid-phase extraction (SPE) of the target analytes by exploiting the bead injection (BI) concept in a mesofluidic lab-on-valve (LOV) format, with subsequent determination by liquid chromatography (LC). The proposed microanalytical system, using a multisyringe burette as propulsion unit, automatically performed the overall SPE steps, including the renewal of the sorbent in each analytical cycle to prevent sample cross-contamination and the post-extraction adjustment of the eluate composition to prevent chromatographic band broadening effects. In order to expedite the LC separation, a C18 monolithic column was applied and an accelerated isocratic elution was carried out by using a cationic surfactant as mobile phase additive. The LOV-BI-LC method was proven reliable for handling and analysis of complex matrices, e.g., spiked swimming pool water and seawater, with limits of detection ranging between 0.45 and 3.2 μg L−1 for 9 mL sample volume. Linear calibration was attained up to 160 μg L−1 for homosalate and up to 35 μg L−1 for the other target analytes, with good reproducibility (RSD < 13%, for 5 different SPE columns). The hyphenated scheme is able to process a given sample simultaneously and within the same time frame than the chromatographic separation/determination of the formerly pre-treated sample, providing concentration values every 9 min. Hence, the sample throughput was enhanced up to 33 times when compared with previously reported off-line SPE methods. A drastic reduction in reagent consumption and effluent production was also attained, contributing to the development of an environment-friendly analyzer.  相似文献   

10.
A method using automated on-line solid phase extraction (SPE) directly coupled to liquid chromatography/tandem mass spectrometry (LC-MS/MS) has been developed for the analysis of six pharmaceuticals by isotope dilution. These selected pharmaceuticals were chosen as representative indicator compounds and were used to evaluate the performance of the on-line SPE method in four distinct water matrices. Method reporting limits (MRLs) ranged from 10 to 25 ng/L, based on a 1 mL extraction volume. Matrix spike recoveries ranged from 88 to 118% for all matrices investigated, including finished drinking water, surface water, wastewater effluent and septic tank influent. Precision tests were performed at 50 and 1000 ng/L with relative standard deviations (RSDs) between 1.3 and 5.7%. A variety of samples were also extracted using a traditional off-line automated SPE method for comparison. Results for both extraction methods were in good agreement; however, on-line SPE used approximately 98% less solvent and less time. On-line SPE coupled to LC-MS/MS analysis for selected indicators offers an alternative, more environmentally friendly, method for pharmaceutical analysis in water by saving time and costs while reducing hazardous waste and potential environmental pollution as compared with off-line SPE methods.  相似文献   

11.
Ammonium pyrrolidinedithiocarbamate impregnated activated carbon (APDC-AC) has been used for the preconcentration of Cd(II), Cu(II), Ni(II), and Zn(II) from aqueous solution by column solid phase extraction (SPE) technique. Trace metal ions in aqueous solution were quantitatively sorbed onto APDC-AC packed in a SPE column at pH 5.0 with a flow rate of 1.0 mL min−1. The sorbed metals were eluted with 1 M nitric acid in acetone solution at a flow rate of 0.6 mL min−1 and analyzed by flame atomic absorption spectrometry. The effects of sample volume, amount of APDC-AC, volume of eluent and ionic strength of working solution on metal ion recovery have been investigated. The present methodology gave recoveries from 90 to 106% and R.S.D. from 0.6 to 5.5%.  相似文献   

12.
A novel, facile and inexpensive solid phase extraction (SPE) method using ethylene glycol bis-mercaptoacetate modified 3-(trimethoxysilyl)-1-propanethiol grafted Fe3O4 nanoparticles coupled with spectrofluorimetric detection was proposed for determination of aflatoxin M1 (AFM1) in liquid milk samples. The method uses the advantage fluorescence enhancement by β-cyclodexterin complexation of AFM1 in 12% (v/v) acetonitrile–water and the remarkable properties of Fe3O4 nanoparticles namely high surface area and strong magnetization were utilized to achieve high enrichment factor (57) and satisfactory extraction recoveries (91–102%) using only 100 mg of magnetic adsorbent. Furthermore, fast separation time of about 15 min avoids many time-consuming column-passing procedures of conventional SPE. The main factors affecting extraction efficiency including pH value, desorption conditions, extraction/desorption time, sample volume, and adsorbent amount were evaluated and optimized. Under the optimal conditions, a wide linear range of 0.04–8 ng mL−1 with a low detection limit of 0.015 ng mL−1 was obtained. The developed method was applied for extraction and preconcentration of AFM1 in three commercially available milk samples and the results were compared with the official AOAC method.  相似文献   

13.
This paper proposes and compares two approaches based on off- and in-line solid-phase extraction (SPE), intended to enhance sensitivity in capillary electrophoresis with ultraviolet detection (CE-UV) using as a model the determination of ochratoxin A (OA) in river water samples. In the off-line SPE mode, the reversed-phase sorbent (octadecilsylane, C18) selectively retains the target analyte (OA) and allows large volumes of the sample (70 mL) to be introduced and subsequently eluted in a small volume (0.1 mL) of an appropriate solution. In the in-line SPE mode, a custom-made microcartridge is inserted near the inlet of the capillary, which is filled with the same C18 sorbent. This solid phase selectively retains OA present in a sample volume as low as approximately 640 μL for subsequent elution with ca. 135 nL of an appropriate eluent. The limit of detection (LOD) obtained with the in-line SPE method was 1 ng L-1, which is 3 orders of magnitude lower than that obtained with CE-UV and roughly 1 order lower than that provided by the off-line SPE-CE-UV method.  相似文献   

14.
A direct, versatile method for the determination of ethyl glucuronide (EtG), a biomarker of ethanol consumption, in urine has been developed using reversed-phase liquid chromatography with pulsed electrochemical detection (PED). EtG and methyl glucuronide (MetG), which serves as an internal standard, are readily separated using a mobile phase consisting of 1% acetic acid/acetonitrile (98/2, v/v). Post-column addition of NaOH allows for the detection of all glucuronides using PED at a gold working electrode. Upon optimization, EtG was found to have a limit of detection of 0.03 μg/mL (7 pmol; 50 μL injection volume) and repeatability at the limit of quantitation of 1.7%R.S.D. (relative standard deviation). Solid-phase extraction (SPE) using an aminopropyl phase was used to remove interferents in urine samples prior to their analysis. Compound recovery following SPE was approximately 50 ± 2%. The forensic utility of this method was further validated by the analysis of 29 post-mortem urine specimens, whose results agreed strongly with certified determinations.  相似文献   

15.
Response surface methodology (RSM) was applied to the optimization of on-line solid-phase extraction (SPE) parameters, and an automated system of on-line SPE coupled with high-performance liquid chromatography (HPLC) with fluorescence detection was developed for the determination of puerarin and daidzein in human serum. The human serum sample of 50 μL was injected into a conditioned C18 SPE cartridge, and the matrix was washed out with acetonitrile-KH2PO4-triethylamine buffer (0.01 M, pH 7.4) (3:97, v/v) for 3 min at a flow rate of 0.25 mL/min. Then the target analytes were eluted and transferred to the analytical column. A chromatographic gradient elution was programmed with the mobile phase consisting of acetonitrile and KH2PO4-triethylamine buffer, and the analytes were determined with a fluorescence detector at excitation wavelength of 350 nm and emission wavelength of 472 nm, respectively. The proposed method presented good linear relations (0.85-170 μg/mL for puerarin and 0.2-40 μg/mL for daidzein), satisfactory precision (RSD < 8%), and accredited recovery (92.5-107.8%).  相似文献   

16.
The use of SPE coupled in‐line to CE using electrospray MS detection (in‐line SPE‐CE‐ESI‐MS) was investigated for the preconcentration and separation of four UV filters: benzophenone‐3, 2,2‐dihydroxy‐4‐methoxybenzophenone, 2,4‐dihydroxybenzophenone and 2‐phenylbenzimidazole‐5‐sulphonic acid. First, a CE‐ESI‐MS method was developed and validated using standard samples, obtaining LODs between 0.06 μg/mL and 0.40 μg/mL. For the in‐line SPE‐CE‐ESI‐MS method, three different sorbents were evaluated and compared: Oasis HLB, Oasis MCX, and Oasis MAX. For each sorbent, the main parameters affecting the preconcentration performance, such as sample pH, volume, and composition of the elution plug, and sample injection time were studied. The Oasis MCX sorbent showed the best performance and was used to validate the in‐line SPE‐CE‐ESI‐MS methodology. The LODs reached for standard samples were in the range between 0.01 and 0.05 ng/mL with good reproducibility and the developed strategy provided sensitivity enhancement factors between 3400‐fold and 34 000‐fold. The applicability of the developed methodology was demonstrated by the analysis of UV filters in river water samples.  相似文献   

17.
New mercapto-grafted graphene oxide–magnetic chitosan (GO–MC) has been developed as a novel biosorbent for the preconcentration and extraction of mercury ion from water samples. A facile and ecofriendly synthesis procedure was also developed for modification of GO–MC with 3-mercaptopropyltrimethoxysilane. The prepared nanocomposite material (mercapto/GO–MC) was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and energy-dispersive X-ray spectroscopy (EDX). The mercury analysis was performed by continuous-flow cold vapor atomic absorption spectrometry. The parameters affecting the extraction and preconcentration processes were carried out. The optimum conditions were found to be 60 mg of sorbent, pH of 6.5, 10 min for adsorption time, 3 mL of HCl (0.1 mol L−1)/thiourea (2% w/v) as the eluent and 250 mL for breakthrough volume. An excellent linearity was achieved in the range of 0.12–80 ng mL−1 (R2 = 0.999) at a preconcentration factor of 80. The limit of detection and quantification were achieved as 0.06 ng mL−1 and 0.12 ng mL−1, respectively. A good repeatability was obtained with the relative standard deviation (RSD) of 4.7%. Furthermore, real water samples were analyzed and good recoveries were obtained from 95 to 100%.  相似文献   

18.
Dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-flame ionization detector (GC-FID) was developed for preconcentration and determination of some nitroaromatic compounds in wastewater samples. The effects of different variables on the extraction efficiency were studied simultaneously using experimental design. The variables of interest in the DLLME process were extraction and disperser solvent volumes, salt effect, sample volume, extraction temperature and extraction time. A Plackett-Burman design was performed for screening of variables in order to determine the significant variables affecting the extraction efficiency. Then, the significant factors were optimized by using a central composite design (CCD) and the response surface equations were derived. The optimum experimental conditions found from this statistical evaluation included: sample volume, 9 mL; extraction solvent (CCl4) volume, 20 μL; disperser solvent (methanol) volume, 0.75 mL; sodium chloride concentration, 3% (w/v); extraction temperature, 20 °C and extraction time, 2 min. Under the optimum conditions, the preconcentration factors were between 202 and 314. Limit of detections (LODs) ranged from 0.09 μg L−1 (for 2-nitrotoluene) to 0.5 μg L−1 (for 2,4-dinitrotoluene). Linear dynamic ranges (LDRs) of 0.5-300 and 1-400 μg L−1 were obtained for mononitrotoluenes (MNTs) and dinitrotoluenes (DNTs), respectively. Performance of the present method was evaluated for extraction and determination of nitroaromatic compounds in wastewater samples in the range of microgram per liter and satisfactory results were obtained (RSDs < 10.1%).  相似文献   

19.
Elci L  Kolbe N  Elci SG  Anderson JT 《Talanta》2011,85(1):551-555
Solid-phase extraction (SPE) followed by derivatization and gas chromatography-atomic emission detection (GC-AED) was evaluated for the determination of five chlorophenols (CPs) in water samples. The derivatization was based on the esterification of phenolic compounds with ferrocenecarboxylic acid. The determination of the derivatized phenols was performed by GC-AED in the iron selective detection mode at 302 nm. The described method was tested on spiked water samples.The overall method gave detection limits of 1.6-3.7 ng L−1 and recoveries of 90.9-104.5% for the examined mono- to trichlorophenols in 10 mL water samples. The CPs extracted from a 10 mL water sample with SPE were concentrated into 100 μL of organic solvent, a preconcentration factor of 100. The method was applied to lake and tap water samples, and CP contents between 6 and 51 ng L−1 in lake water and between below the detection limit and 8 ng L−1 in tap water were found for different CPs. The method is quick, simple and gives excellent recoveries, limits of detection and standard deviations.  相似文献   

20.
A.M. Serra 《Talanta》2009,78(3):790-794
A new methodology for the in-line preconcentration, clean-up and speciation of mercury by use of an anion-exchange membrane is proposed. The speciation of mercury is based on retention of its tetrachloro complex onto the membrane while organic mercury flows freely through it. A multisyringe is used as a liquid driver and a cold vapour atomic fluorescence detector is employed to ensure a high sensitivity. Organic mercury is decomposed into to inorganic mercury by using a UV lamp. The carrier and reductant streams consist of 1.5% (m/v) hydrochloric acid and 2% (m/v) tin chloride, respectively. Certified reference material DORM-2 was digested with 37% hydrochloric acid and analysed directly without the need for extraction. The proposed system is more environmental friendly than the classical liquid-liquid extraction procedure. Mercury recoveries from spiked samples and the reference material were all close to 100%. An LOD of 14 and 16 ng/L was obtained for total and organic mercury, respectively, both with an RSD less than 1.3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号