首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dacres H  Narayanaswamy R 《Talanta》2006,69(3):631-636
A highly sensitive optical humidity probe based on reflectance measurements has been developed using Nafion®-crystal violet (CV) films. This sensor can be used to calibrate relative humidity (RH) in the range 0-0.25% with a detection limit (blank signal + 3σb, where σb = the standard deviation (S.D.) of the blank signal) of 0.018% RH (∼4.37 ppm) and exhibited low hysteresis. The sensor films were fully reversible in dry nitrogen and reversal times were shown to be dependent on exposure time and % RH. The response to 1% RH was highly reproducible (S.D. = 1.67%, number of samples (n) = 5). Hydrogen chloride gas did not interfere with the response of the sensor to RH but did reduce sensor reversal times. This sensor displayed sufficient sensitivity that it could be used to detect ppm levels of moisture in process gases such as nitrogen and HCl.  相似文献   

2.
Su PG  Sun YL  Lin CC 《Talanta》2006,69(4):946-951
A novel ceramic nanowires of TiO2 and poly(2-acrylamido-2-methylpropane sulfonate) (TiO2 NWs/PAMPS) composite material films coated on quartz crystal microbalance (QCM) was prepared as a low humidity sensor. The 50 wt.% of TiO2 NWs/PAMPS composite material films showed excellent sensitivity (2.63 −ΔHz/Δppmv) at 31.5 ppmv), linearity (R2 = 0.9959) and acceptable response time (64 s at 34.6 ppmv). The low humidity sensing mechanism was discussed in terms of surface texture and nanostructured morphology of the composite materials. Moreover, the adsorption dynamic analysis, molecular mechanics calculation (association constant), was used to elucidate the effect of adding 50 wt.% TiO2 NWs into PAMPS in the increased sensitivity of low humidity sensing.  相似文献   

3.
Optically transparent and electrically conductive nanocomposite thin films consisting of multiwalled carbon nanotubes (MWCNTs), gold nanoparticles (GNPs) and myoglobin molecules that glue GNPs and MWCNTs together are fabricated for the first time on glass substrates from aqueous solution. The nanocomposite thin film is capable of varying its resistance, impedance or optical transmittance at room temperature in response to changes in ambient humidity. The conductometric sensitivity to relative humidity (RH) of the nanocomposite thin film is compared with those of the pure and Mb-functionalized MWCNT layers. The pure MWCNT layer shows a small increase in its resistance with increasing RH due to the effect of p-type semiconducting nanotubes present in the film. In contrast, a four times higher sensitivity to RH is observed for both the nanocomposite and Mb-functionalized MWCNT thin films. The sensitivity enhancement is attributable to swelling of the thin films induced by water absorption in the presence of Mb molecules, which increases the inter-nanotube spacing and thereby causes a further increase of the film resistance. A humidity change as low as DeltaRH=0.3 % has been readily detected by conductometry using the nanocomposite thin film.  相似文献   

4.
Li Y  Yang MJ  She Y 《Talanta》2004,62(4):707-712
Thin film humidity sensors have been prepared using in situ synthesized inorganic/organic nanocomposites of sodium polystyrenesulfonate (NaPSS) and ZnO. Its humidity sensing characteristics and the sensing mechanism have been investigated by measuring the complex impedance spectra of the sensor at different humidities. The logarithm of the impedance of sensor based on composite film changes linearly by four-orders of magnitude over almost whole humidity range (11-97% RH). Furthermore, the sensor exhibits a quick response (absorption: 2 s, desorption: 2 s) and small hysteresis (less than 2% RH). The composite film shows better sensing properties than NaPSS film, such as better linearity, quicker response. Explanation to the improvement is attempted by taking into account of the composition and structure of the nanocomposites.  相似文献   

5.
Starch-iodine indicator films were found to have useful spectroscopic properties for the detection of water vapor. The large colorimetric response of these easily prepared films was easily detected by the absorption of 632.8 nm HeNe laser light, using a planar integrated optical waveguide (IOW) platform. The detection limit of a prototype sensor was found to be below 5% relative humidity (RH), with response times of the order of seconds.  相似文献   

6.
Su PG  Uen CL 《Talanta》2005,66(5):1247-1253
A composite material of dispersed organic silicon sol and poly(2-acrylamido-2-methylpropane sulfonate) (poly-AMPS) was used to make humidity sensor without protective film or complicated chemical procedures. The organic silicon sol was dispersed well in the poly-AMPS without using dispersion agent. Parameters that may affect the water-resistive but humidity-sensitive characteristic of composite material, the adding amount of organic silicon sol solution and the film of thermal treatment time, were investigated. The microstructure of the material was analyzed, and the humidity sensing and electrical properties of the sensor were measured. The sensor well responded to humidity with a relatively good linearity, though it depended on the applied frequency. The temperature influence between 15 and 35 °C was within −0.17 % relative humidity (RH)/°C in the range of 30–90% RH. The activation energy was maximum around 40% RH. The sensor showed the hysteresis within 5.9%, fast response time, long-term stability (75 days at least) and satisfactory resistance to high humidity atmosphere (97% RH) and chemical environment (20% C2H5OH vapor). Analyzing the structure and complex impedance plots of organic silicon sol/poly-AMPS was used to explain improvement in humidity sensing properties in comparison with nano-sized SiO2 powder/poly-AMPS films.  相似文献   

7.
This work details the fabrication and performance of a sensor for ammonia gas analysis which has been constructed via the inkjet-printed deposition of polyaniline nanoparticle films. The conducting films were assembled on interdigitated electrode arrays and characterised with respect to their layer thickness and thermal properties. The sensor was further combined with heater foils for operation at a range of temperatures. When operated in a conductimetric mode, the sensor was shown to exhibit temperature-dependent analytical performance to ammonia detection. At room temperature, the sensor responded rapidly to ammonia (t50 = 15 s). Sensor recovery time, response linearity and sensitivity were all significantly improved by operating the sensor at temperatures up to 80 °C. The sensor was found to have a stable logarithmic response to ammonia in the range of interest (1-100 ppm). The sensor was also insensitive to moisture in the range from 35 to 98% relative humidity. The response of the sensor to a range of common potential interferents was also studied.  相似文献   

8.
Scaccia S 《Talanta》2005,67(4):678-681
The determination of water in composite poly(ethylene oxide) (PEO)-based polymer electrolytes by volumetric Karl Fischer (KF) titration is described. The measurements have been carried out on specimens (up to 10 g) of polymer electrolytes (as single components, their mixture and thin film) in a dry-room (relative humidity, RH, <0.2% at 20 °C). The use of a dry-room allowed to obtain a baseline drift (defined as the titration rate necessary to keep dry the cell) as low as 0.5 μg H2O min−1. Working range is 0.001-0.5 wt.% H2O and precision, expressed as relative standard deviation of seven replicates, is 5 at 0.5 wt.% level. Comparison of the gathered results with those obtained by oven methods are provided. Uptake water from surrounding environment can be detected at a level as low as 0.001 wt.%.  相似文献   

9.
Design and fabrication of an ammonia sensor operating at room temperature based on pigment-sensitized TiO2 films was described. TiO2 was prepared by sol–gel method and deposited on glass slides containing gold electrodes. Then, the film immersed in a 2.5 × 10−4 M ethanol solution of cyanidin to absorb the pigment. The hybrid organic–inorganic formed film here can detect ammonia reversibly at room temperature. The relative change resistance of the films at a potential difference of 1.5 V is determined when the films are exposed to atmospheres containing ammonia vapors with concentrations over the range 10–50 ppm. The relative change resistance, S, of the films increased almost linearly with increasing concentrations of ammonia (r = 0.92). The response time to increasing concentrations of the ammonia is about 180–220 s, and the corresponding values for decreasing concentrations 240–270 s. At low humidity, ammonia could be ionized by the cyanidin on the TiO2 film and thereby decrease in the proton concentration at the surface. Consequently, more positively charged holes at the surface of the TiO2 have to be extracted to neutralize the adsorbed cyanidin and water film. The resistance response to ammonia of the sensors was nearly independent on temperature from 10 to 50 °C. These results are not actually as good as those reported in the literature, but this preliminary work proposes simpler and cheaper processes to realize NH3 sensor for room temperature applications.  相似文献   

10.
A series of poly(aryl ether benzimidazole) copolymers bearing different aryl ether linkage contents were synthesized by condensation polymerization in polyphosphoric acid (PPA) by varying the feed ratio of 4,4′-dicarboxydiphenyl ether (DCPE) to terephthalic acid (TA). As the ether unit content in the copolymer increased, the solubility of the copolymer in PPA and N,N′-dimethylacetamide/LiCl improved. For example 3–7 wt.% DMAc solution containing 2 wt.% of LiCl could be prepared from the copolymers. XRD studies revealed that the incorporation of flexible aryl ether linkages increased the chain d-spacings of the polymer backbones and decreased the crystallinity of the copolymers. Still, these copolymers having ether linkages showed reasonably good thermal/mechanical stability and high proton conductivity. For example, the copolymer with 30 mol% ether linkage had a tensile strength of 43 MPa (at 26 °C and 40% relative humidity) at an acid doping level of 7.5 mol H3PO4 and a proton conductivity of 0.098 S cm−1 (at 180 °C and 0% relative humidity) at an acid doping level of 6.6 mol H3PO4.  相似文献   

11.
In situ preparation of polypyrrole (Ppy) by photo-polymerization coated on a quartz crystal microbalance (QCM) as a low humidity sensor was reported. Different concentrations of Ppy films say 0 wt.% (as blank), 0.1, 1, and 10 wt.% were investigated to measure humidity concentrations between 14.7 and 5412.5 ppmv. The adsorption/desorption behavior was also examined at humidity concentration 510.2 ppmv. The sensitivities of 0, 0.1 and 1 wt.% Ppy films at 51.5 ppmv were 0.143, 0.219 and 0.427, respectively. For 1 wt.% Ppy, the highest sensitivity was obtained. The slope and correlation coefficients (R2) for 1 wt.% Ppy at the ranges of 14.7–898.6 ppmv were 0.0646 and 0.9909, respectively. A series of molecular simulations have been carried out to calculate bond energy for the water molecule interaction with Ppy, which was found to be 3 kcal/mol indicating the existence of hydrogen bonding during the sorption process. Based on Langmuir isotherm adsorption assumption, for 0.1 and 1 wt.% Ppy films, the association constants were 2606.30 and 5792.98, respectively. This larger association constant for 1 wt.% Ppy film explains higher sensitivity.  相似文献   

12.
Thick films of pure ZnO were obtained by screen-printing technique. Surface functionalized ZnO thick films by Cr2O3 were obtained by dipping pure ZnO thick films into 0.01 M aqueous solution of chromium trioxide (CrO3). The dipped films were fired at 500 °C for 30 min. Upon firing, the CrO3 would reduce to Cr2O3. Cr2O3-activated (0.47 mass%) ZnO thick films resulted in LPG sensor. Upon exposure to 100 ppm LPG, the barrier height between Cr2O3 and ZnO grains decreases markedly, leading to a drastic decrease in resistance. The sensor was found to sense LPG at 350 °C and no cross sensitivity was observed to other hazardous, polluting and inflammable gases. The quick response (∼18 s) and fast recovery (∼42 s) are the main features of this sensor. The effects of microstructures and dopant concentrations on the gas sensing performance of the sensor were studied and discussed.  相似文献   

13.
The viscosities of as received 5.1 wt.% Nafion solutions (EW = 1100, Du Pont Co) blended with various concentrations of ZrOCl2 were studied. We show the solution viscosity decreases as the wt. ratio of [ZrOCl2]/[Nafion] is increased from 0.0 to 0.03, then the viscosity does not change significantly as the wt. ratio of [ZrOCl2]/[Nafion] is increased from 0.03 to 0.16, and then the viscosity increases dramatically as the wt. ratio of [ZrOCl2]/[Nafion] is increased above 0.16. Four Nafion solutions consisting of 5.1 wt.% Nafion and ZrOCl2 with [ZrOCl2]/[Nafion] wt. ratios of 0.019–0.24 were used with porous poly(tetrafluoroethylene) (PTFE) film to prepare zirconium hydrogenphosphate (ZrP) hybridized Nafion/PTFE (NF–ZrP) composite membranes by direct impregnating porous PTFE in Nafion/ZrOCl2 solutions. The influence of [ZrOCl2]/[Nafion] wt. ratio of Nafion/ZrOCl2 solution on the membrane morphology of NF–ZrP and polyelectrolyte membrane fuel cell (PEMFC) performance at temperatures of 110–130 °C with relative humidity of 51.7–28.8% RH was investigated.  相似文献   

14.
An optochemical ozone sensor is described that has been manufactured by immobilisation of novel soluble indigo derivatives in permeable transparent polymeric films of polydimethylsiloxane–polycarbonate copolymer. From a number of investigated indigo derivatives, 4,4,7,7-tetraalkoxyindigo 9 has been selected for optimal sensitivity and specificity of ozone detection. A linear calibration for ozone can be obtained in the range between 0.01 and 0.5 ppm. The limit of quantitation is 0.03 ppm, and the accuracy exceeds 8%. It takes about 134 s to measure the relatively low occupational exposure concentration of 0.1 ppm. A reduction of the sensor response time could be achieved through application of double-sided coated sensors instead of single-sided variants. The stability of the sensors and the effect of external parameters like relative humidity (RH), temperature and gas flow on the sensor response have been investigated. The sensor response is affected by varying the gas flow or temperature; however, humidity in the range between 0 and 90% RH does not affect sensor response. The indigo derivative 9 remained stable inside the polymeric film and no chemical reaction, crystallisation or leaching occurred during 10 months of observation. Proper choice of indicator dye and polymeric material and successful application of kinetic evaluation method for the exposure experiments determine the desired features of the sensor.  相似文献   

15.
A small-sized surface plasmon resonance (SPR) sensor with a microchip flow cell has been developed for the purpose of enhancing the sensitivity of the SPR detector for low molecular weight compounds. This portable differential SPR detector consisted of an LED, two cylindrical lenses, a round prism, a divided mirror, a CCD, electronics, and a polydimethylsiloxane/gold microchip with two flow paths (10 mm long, 1 mm wide, 20-100 μm deep). 3-Mercaptopropyltrimethoxysilane was used for sealing the microchip. The performance of the on-site orientated SPR detector was estimated using sucrose and IgA. A drastic change in the SPR intensity appeared. The depth of the flow cell was in inverse proportion to the SPR intensity. Compared to a conventional flow cell having the size of 10 mm (L) × 1 mm (W) × 1 mm (D), its sensitivity to 10% sucrose and 0.9 nM IgA increased about 11 and 39 times, respectively. This phenomenon seemed to be due to the increase in the substance on the SPR sensor based on its size effect. These results showed that the application of the microchip sensor for SPR measurement has the possibility for improvement of the SPR intensity for low molecular substances.  相似文献   

16.
Polyaniline (PANi) composite nanofibers were deposited on surface acoustic wave (SAW) resonator with a central frequency of 433 MHz to construct humidity sensors. Electrospun nanofibers of poly(methyl methacrylate), poly(vinyl pyrrolidone), poly(ethylene oxide), poly(vinylidene fluoride), poly(vinyl butyral) (PVB) were characterized by scanning electron microscopy, and humidity response of corresponding SAW humidity sensors were investigated. The results indicated that PVB was suitable as a matrix to form nanofibers with PANi by electrospinning (ES). Electrospun PANi/PVB nanofibers exhibited a core–sheath structure as revealed by transmittance electron microscopy. Effects of ES collection time on humidity response of SAW sensor based on PANi/PVB nanofibers were examined at room temperature. The composite nanofiber sensor exhibited very high sensitivity of ∼75 kHz/%RH from 20 to 90%RH, ultrafast response (1 s and 2 s for humidification and desiccation, respectively) and good sensing linearity. Furthermore, the sensor could detect humidity as low as 0.5%RH, suggesting its potentials for low humidity detection. Attempts were done to explain the attractive humidity sensing performance of the sensor by considering conductivity, hydrophilicity, viscoelasticity and morphology of the polymer composite nanofibers.  相似文献   

17.
H3PO4 doped polyaniline was synthesized by a single‐step chemical polymerization method using ammonium persulfate as an oxidizing agent. The material characterization was done by SEM, UV–vis spectroscopy and thermogravimetric analysis (TGA). The pellets of the synthesized material were used to study the electrical properties, using a four‐probe method. The room temperature electrical conductivity is found to be 0.2201 S/cm. The electrical resistance in response to the varying humid environment (ranging between 20 and 100% RH) is recorded to evaluate the sensitivity of the H3PO4 polyaniline samples toward humidity. The resistance of the samples is found to vary by three orders of magnitude for 20–100% RH and is found to decrease with increasing humidity. The response and recovery time are observed to be 12–14 and 26–30 sec, respectively. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
For the first time, a new platform based on electrochemical growth of Au nanoparticles on aligned multi-walled carbon nanotubes (A-MWCNT) was developed for sensitive lable-free DNA detection of the TP53 gene mutation, one of the most popular genes in cancer research. Electrochemical impedance spectroscopy (EIS) was used to monitor the sequence-specific DNA hybridization events related to TP53 gene. Compared to the bare Ta or MWCNT/Ta electrodes, the synergistic interactions of vertically aligned MWCNT array and gold nanoparticles at modified electrode could improve the density of the probe DNA attachment and resulting the sensitivity of the DNA sensor greatly. Using EIS, over the extended DNA concentration range, the change of charge transfer resistance was found to have a linear relationship in respect to the logarithm of the complementary oligonucleotides sequence concentrations in the wide range of 1.0 × 10−15 − 1.0 × 10−7 M, with a detection limit of 1.0 × 10−17 M (S/N = 3). The prepared sensor also showed good stability (14 days), reproducibility (RSD = 2.1%) and could be conveniently regenerated via dehybridization in hot water. The significant improvement in sensitivity illustrates that combining gold nanoparticles with the on-site fabricated aligned MWCNT array represents a promising platform for achieving sensitive biosensor for fast mutation screening related to most human cancer types.  相似文献   

19.
A robust optical composite thin film dissolved oxygen sensor was fabricated by ionically trapping the dye ruthenium(II) tris(4,7-diphenyl-1,10-phenanthroline) dichloride in a blended fluoropolymer matrix consisting of Nafion® and Aflas®. Strong phosphorescence, which was strongly quenched by dissolved oxygen (DO), was observed when the sensor was immersed in water. The sensor was robust, optically transparent, with good mechanical properties. Fast response, of a few seconds, coupled with sensitivity of about 0.1 mg L−1 (DO) over the range 0-30 mg L−1 and resistance to leaching, were also exhibited by this system. The Stern-Volmer (SV) plot exhibited slight downward turning at all oxygen concentrations. A linear plot was obtained when the SV equation was modified to account for the varying sensitivity of dye molecules in the matrix to the quencher. Good long term stability was observed.  相似文献   

20.
Nanocrystalline TiN/NiTi thin films have been grown on silicon substrate by dc magnetron sputtering to improve the corrosion and mechanical properties of NiTi based shape memory alloys without sacrificing the phase transformation effect. Interestingly, the preferential orientation of the TiN films was observed to change from (1 1 1) to (2 0 0) with change in nature of sputtering gas from 70% Ar + 30% N2 to 100% N2. In present study the influence of crystallographic orientation of TiN on mechanical and corrosion properties of TiN/NiTi thin films was investigated. TiN (2 0 0)/NiTi films were found to exhibit high hardness, high elastic modulus, and thereby better wear resistance as compared to pure NiTi and TiN (1 1 1)/NiTi films. Electrochemical test revealed that TiN coated NiTi film exhibits better corrosion resistance in 1 M NaCl solution as compared to uncoated NiTi film. The application of TiN/NiTi films in the electrochemical sensing of dopamine, which has a critical physiological importance in Parkinson's disease, has been demonstrated. A comparison of voltammetric response of dopamine at silicon based electrodes modified with different nanocrystalline coatings indicated that these films catalyze the oxidation of dopamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号