首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Gendi Jin 《Talanta》2009,80(2):858-1080
A new petentiometric method to determine peroxide hydrogen and glucose had been studied. This method had been applied on the petentiometric determination of peroxide hydrogen and glucose in the total ionic strength adjustment buffer (TISAB) (pH 7.5) solution with the glassy electrode modified by the calix[4]arene. The glassy carbon electrode covered with the calix[4]arene depended on the H2O2 concentration in the range of log[H2O2] from −3.3 to −1.2 in the solution of TISAB (pH 7.5) with nearly Nernstian slope of about 65.6 ± 3 mV and the detection limit of peroxide hydrogen was 4.0 × 10−5 mol L−1. The glassy carbon electrode covered with the calix[4]arene depended on the glucose concentration in the range of log[glucose] from −3.6 to −2.8 in the solution of TISAB (pH 7.5) with nearly Nernstian slope of about 50.2 ± 2 mV and the detection limit of glucose was 2.0 × 10−5 mol L−1. The electrode had the good selectivity, sensitivity, stability and repeatability.  相似文献   

2.
Liu AL  Zhang SB  Chen W  Huang LY  Lin XH  Xia XH 《Talanta》2008,77(1):314-318
The electrochemical behavior of isorhamnetin (ISO) at a glassy carbon electrode was studied in a phosphate buffer solution (PBS) of pH 4.0 by cyclic voltammetry (CV) and differential pulse voltammetric method (DPV). A well-defined redox wave of ISO involving one electrons and one proton appeared. The electrode reaction is a reactant weak adsorption-controlled process with a charge transfer coefficient (α) of 0.586. Based on the understanding of the electrochemical process of ISO at the glassy carbon electrode, analysis of ISO can be realized. Under optimal conditions, the oxidation peak current showed linear dependence on the concentration of ISO in the range of 1.0 × 10−8 to 4.0 × 10−7 M and 1.0 × 10−6 to 1.0 × 10−5 M. The detection limit is 5.0 × 10−9 M. This method has been successfully applied to the detection of ISO in tablets.  相似文献   

3.
Mehretie S  Admassie S  Hunde T  Tessema M  Solomon T 《Talanta》2011,85(3):1376-1382
A sensitive and selective method was developed for the determination of N-acetyl-p-aminophenol (APAP) and p-aminophenol (PAP) using poly(3,4-ethylenedioxythiophene) (PEDOT)-modified glassy carbon electrode (GCE). Cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical reaction of APAP and PAP at the modified electrode. Both APAP and PAP showed quasireversible redox reactions with formal potentials of 367 mV and 101 mV (vs. Ag/AgCl), respectively, in phosphate buffer solution of pH 7.0. The significant peak potential difference (266 mV) between APAP and PAP enabled the simultaneous determination both species based on differential pulse voltammetry. The voltammetric responses gave linear ranges of 1.0 × 10−6-1.0 × 10−4 mol L−1 and 4.0 × 10−6-3.2 × 10−4 mol L−1, with detection limits of 4.0 × 10−7 mol L−1 and 1.2 × 10−6 mol L−1 for APAP and PAP, respectively. The method was successfully applied for the determination of APAP and PAP in pharmaceutical formulations and biological samples.  相似文献   

4.
Li D  Jia J  Wang J 《Talanta》2010,83(2):332-336
A bismuth-film modified graphite nanofibers-Nafion glassy carbon electrode (BiF/GNFs-NA/GCE) was constructed for the simultaneous determination of trace Cd(II) and Pb(II). The electrochemical properties and applications of the modified electrode were studied. Operational parameters such as deposition potential, deposition time, and bismuth ion concentration were optimized for the purpose of determination of trace metal ions in 0.10 M acetate buffer solution (pH 4.5). Under optimal conditions, based on three times the standard deviation of the baseline, the limits of detection were 0.09 μg L−1 for Cd(II) and 0.02 μg L−1 for Pb(II) with a 10 min preconcentration. In addition, the BiF/GNFs-NA/GCE displayed good reproducibility and selectivity, making it suitable for the simultaneous determination of Cd(II) and Pb(II) in real sample such as river water and human blood samples.  相似文献   

5.
Sun D  Xie X  Cai Y  Zhang H  Wu K 《Analytica chimica acta》2007,581(1):27-31
In the presence of Nafion, single-walled carbon nanotubes (SWNTs) were easily dispersed into ethanol, resulting in a homogeneous SWNTs/Nafion suspension. After evaporating ethanol, a SWNTs/Nafion film with bifunctionality was constructed onto glassy carbon electrode (GCE) surface. Attributing to the strong cation-exchange ability of Nafion and excellent properties of SWNTs, the SWNTs/Nafion film-coated GCE remarkably enhances the sensitivity of determination of Cd2+. Based on this, an electrochemical method was developed for the determination of trace levels of Cd2+ by anodic stripping voltammetry (ASV). In pH 5.0 NaAc-HAc buffer, Cd2+ was firstly exchanged and adsorbed onto SWNTs/Nafion film surface, and then reduce at −1.10 V. During the positive potential sweep, reduced cadmium was oxidized, and a well-defined stripping peak appeared at −0.84 V, which can be used as analytical signal for Cd2+. The linear range is found to be from 4.0 × 10−8 to 4.0 × 10−6 mol L−1, and the lowest detectable concentration is estimated to be 4.0 × 10−9 mol L−1. Finally, this method was successfully employed to detect Cd2+ in water samples.  相似文献   

6.
A graphene, chitosan and Fe3O4 nanoparticles (nano-Fe3O4) modified glassy carbon electrode (graphene-chitosan/nano-Fe3O4/GCE) was fabricated. The modified electrode was characterized by scanning electron microscope and electrochemical impedance spectroscopy. The electrochemical oxidation behavior of guanosine was investigated in pH 7.0 phosphate buffer solution by cyclic voltammetry and differential pulse voltammetry. The experimental results indicated that the modified electrode exhibited an electrocatalytic and adsorptive activities towards the oxidation of guanosine. The transfer electron number (n), transfer proton number (m) and electrochemically effective surface area (A) were calculated. Under the optimized conditions, the oxidation peak current was proportional to guanosine concentration in the range of 2.0 × 10−6 to 3.5 × 10−4 mol L−1 with the correlation coefficient of 0.9939 and the detection limit of 7.5 × 10−7 mol L−1 (S/N = 3). Moreover, the modified electrode showed good ability to discriminate the electrochemical oxidation response of guanosine, guanine and adenosine. The proposed method was further applied to determine guanosine in spiked urine samples and traditional Chinese medicines with satisfactory results.  相似文献   

7.
A FIA-amperometric method for azithromycin determination was developed. A working glassy carbon electrode and a Ag/AgCl/NaCl (3 M) reference electrode were used. The determination is based on the electrochemical oxidation of the azithromycin at 0.9 V in Britton-Robinson buffer solution (pH 8.0). Due to the adsorption of the reaction products on the electrode surface, an effective cleaner cycle was implemented. By using the optimum chemical and FIA conditions, a concentration linear range of 1.0-10.0 mg L−1 and a detection limit (LOD) of 0.76 mg L−1 are obtained. The method was validated and satisfactorily applied to the determination of azithromycin in pharmaceutical formulations.  相似文献   

8.
A simple procedure has been used for preparation of modified glassy carbon electrode with carbon nanotubes and copper complex. Copper complex [Cu(bpy)2]Br2 was immobilized onto glassy carbon (GC) electrode modified with silicomolybdate, α-SiMo12O404− and single walled carbon nanotubes (SWCNTs). Copper complex and silicomolybdate irreversibly and strongly adsorbed onto GC electrode modified with CNTs. Electrostatic interactions between polyoxometalates (POMs) anions and Cu-complex, cations mentioned as an effective method for fabrication of three-dimensional structures. The modified electrode shows three reversible redox couples for polyoxometalate and one redox couple for Cu-complex at wide range of pH values. The electrochemical behavior, stability and electron transfer kinetics of the adsorbed redox couples were investigated using cyclic voltammetry. Due to electrostatic interaction, copper complex immobilized onto GC/CNTs/α-SiMo12O404− electrode shows more stable voltammetric response compared to GC/CNTs/Cu-complex modified electrode. In comparison to GC/CNTs/Cu-complex the GC/CNTs/α-SiMo12O404− modified electrodes shows excellent electrocatalytic activity toward reduction H2O2 and BrO3 at more reduced overpotential. The catalytic rate constants for catalytic reduction hydrogen peroxide and bromate were 4.5(±0.2) × 103 M−1 s−1 and 3.0(±0.10) × 103 M−1 s−1, respectively. The hydrodynamic amperommetry technique at 0.08 V was used for detection of nanomolar concentration of hydrogen peroxide and bromate. Detection limit, sensitivity and linear concentration range proposed sensor for bromate and hydrogen peroxide detection were 1.1 nM and 6.7 nA nM−1, 10 nM-20 μM, 1 nM, 5.5 nA nM−1 and 10 nM-18 μM, respectively.  相似文献   

9.
Wang F  Zhao F  Zhang Y  Yang H  Ye B 《Talanta》2011,84(1):160-168
The present paper describes to modify a double stranded DNA-octadecylamine (ODA) Langmuir-Blodgett film on a glassy carbon electrode (GCE) surface to develop a voltammetric sensor for the detection of trace amounts of baicalein. The electrode was characterized by atomic force microscopy (AFM) and cyclic voltammetry (CV). Electrochemical behaviour of baicalein at the modified electrode had been investigated in pH 2.87 Britton-Robinson buffer solutions by CV and square wave voltammetry (SWV). Compared with bare GCE, the electrode presented an electrocatalytic redox for baicalein. Under the optimum conditions, the modified electrode showed a linear voltammetric response for the baicalein within a concentration range of 1.0 × 10−8-2.0 × 10−6 mol L−1, and a value of 6.0 × 10−9 mol L−1 was calculated for the detection limit. And the modified electrode exhibited an excellent immunity from epinephrine, dopamine, glucose and ascorbic acid interference. The method was also applied successfully to detect baicalein in the medicinal tablets and spiked human blood serum samples with satisfactory results.  相似文献   

10.
The electrochemical properties of valacyclovir, an antiviral drug, were investigated in pH range 1.8-12.0 by cyclic, differential pulse and square-wave voltammetry. The drug was irreversibly oxidized at a glassy carbon electrode in one or two oxidation steps, which are pH-dependent. For analytical purposes, a very resolved diffusion controlled voltammetric peak was obtained in Britton-Robinson buffer at pH 10.0 using differential pulse and square-wave modes. Limits of detection were 1.04 × 10−7 and 4.60 × 10−8 M for differential pulse and square-wave voltammetry, respectively. The applicability to direct assays of tablets, spiked human serum and simulated gastric fluid, was described.  相似文献   

11.
Gazy AA 《Talanta》2004,62(3):575-582
The adsorptive and electrochemical behavior of amlodipine besylate on a glassy carbon electrode were explored in Britton-Robinson buffer solution by using cyclic and square-wave voltammetry. Cyclic voltammetric studies indicated the oxidation of amlodipine besylate at the electrode surface through a single two-electron irreversible step and fundamentally controlled by adsorption. The solution conditions and instrumental parameters were optimized for the determination of the authentic drug by adsorptive square-wave stripping voltammetry. Amlodipine besylate gave a sensitive adsorptive oxidation peak at 0.510 V (versus Ag/AgCl). The oxidation peak was used to determine amlodipine besylate in range 4.0×10−8 to 2.0×10−6 with a detection limit of 1.4×10−8 M. The procedure was successfully applied for the assay of amlodipine besylate in tablets (Norvasc)®. The percentage recoveries were in agreement with those obtained by the reference method. Applicability to assay the drug in urine and serum samples was illustrated. The mean percentage recoveries were 96.31±1.18 and 96.98±1.17, respectively. The proposd method used for monotoring clinically relevant concntrations of drug in human urine and serum.  相似文献   

12.
Torriero AA  Luco JM  Sereno L  Raba J 《Talanta》2004,62(2):247-254
The electrochemical oxidation of salicylic acid (SA) has been studied on a glassy carbon electrode using cyclic voltammetry and differential pulse voltammetric (DPV) method. SA gives a single irreversible oxidation wave over the wide pH range studied. The irreversibility of the electrode process was verified by different criteria. The mechanism of oxidation is discussed. Using differential pulse voltammetry, SA yielded a well-defined voltammetric response in Britton-Robinson buffer solution, pH 2.37 at 1.088 V (versus Ag/AgCl). The method was linear over the SA concentration range: 1-60 μg ml−1. The method was successfully applied for the analysis of SA as a hydrolysis product, in solid pharmaceutical formulations containing acetylsalicylic acid (ASA).  相似文献   

13.
M. Pérez-Ortiz 《Talanta》2010,82(1):398-630
In this work, the electrochemical behavior and the analytical application of atomoxetine, a selective noradrenaline reuptake inhibitor, are studied. Atomoxetine, studied by differential pulse voltammetry and cyclic voltammetry on a glassy carbon electrode, exhibited an anodic response in aqueous media with pH between 1.5 and 7. In non-aqueous medium (acetonitrile), the drug exhibited two irreversible oxidation peaks that are diffusion controlled. From chronocoulometric studies in acetonitrile, it was determined that each oxidation signal involves two and four electrons, respectively. For analytical purposes, a differential pulse voltammetry technique in 0.1 mol L−1 perchloric acid was selected, which exhibited adequate figures of merit. The percent recovery was 96.6 ± 1.2 and the detection and quantitation limits were 6.9 × 10−5 and 1.0 × 10−4 mol L−1, respectively. Also, results indicate that excipients do not interfere with the oxidation signal of atomoxetine, which leads to the conclusion that the developed method is satisfactorily selective for atomoxetine quantification in pharmaceuticals with no prior separation or extraction necessary. Finally, the proposed voltammetric method was successfully applied to both the assay and the uniformity content of atomoxetine in capsules. For comparison, high-performance liquid chromatography analysis was also performed.  相似文献   

14.
A simple procedure was developed to prepare a glassy carbon electrode modified with single-wall carbon nanotubes (SWCNTs) and Os(III)-complex. The glassy carbon (GC) electrode modified with CNTs was immersed into Os(III)-complex solution (direct deposition) for a short period of time (60 s). 1,4,8,12-Tetraazacyclotetradecane osmium(III) chloride, (Os(III)LCl2)·ClO4, irreversibly and strongly adsorbed on SWCNTs immobilized on the surface of GC electrode. Cyclic voltammograms of the Os(III)-complex-incorporated-SWCNTs indicate a pair of well defined and nearly reversible redox couple with surface confined characteristic at wide pH range (1-8). The surface coverage (Γ) and charge transfer rate constant (ks) of the immobilized Os-complex on SWCNTs were 3.07 × 10−9 mol cm−2, 5.5 (±0.2) s−1, 2.94 × 10−9 mol cm−2, 7.3 (±0.3) s−1 at buffer solution with pH 2 and 7, respectively, indicate high loading ability of SWCNTs for Os(III) complex and great facilitation of the electron transfer between electroactive redox center and carbon nanotubes immobilized on the electrode surface. Modified electrodes showed higher electrocatalytic activity toward reduction of BrO3, IO3 and IO4 in acidic solutions. The catalytic rate constants for catalytic reduction bromate, periodate and iodate were 3.79 (±0.2) × 103, 7.32 (±0.2) × 103 and 1.75 (±0.2) × 103 M−1 s −1, respectively. The hydrodynamic amperometry of rotating modified electrode at constant potential (0.3 V) was used for nanomolar detection of selected analytes. Excellent electrochemical reversibility of the redox couple, good reproducibility, high stability, low detection limit, long life time, fast amperometric response time, wide linear concentration range, technical simplicity and possibility of rapid preparation are great advantage of this sensor.  相似文献   

15.
The reduction of 4-nitrophenol (4-NP) has been carried out on a modified glassy carbon electrode using cyclic and differential pulse voltammetry (DPV). The sensor was prepared by modifying the electrode with lithium tetracyanoethylenide (LiTCNE) and poly-l-lysine (PLL) film. With this modified electrode 4-NP was reduced at −0.7 V versus SCE. The sensor presented better performance in 0.1 mol l−1 acetate buffer at pH 4.0. The other experimental parameters, such as concentration of LiTCNE and PLL, pulse amplitude and scan rate were optimized. Under optimized operational conditions, a linear response range from 27 up to 23200 nmol l−1 was obtained with a sensitivity of 3.057 nA l nmol−1 cm−2. The detection limit for 4-NP determination was 7.5 nmol l−1. The proposed sensor presented good repeatability, evaluated in term of relative standard deviation (R.S.D.=4.4%) for n=10 and was applied for 4-NP determination in water samples. The average recovery for these samples was 103.0 (± 0.7)%.  相似文献   

16.
Graphene nanosheets, dispersed in Nafion (Nafion-G) solution, were used in combination with in situ plated bismuth film electrode for fabricating the enhanced electrochemical sensing platform to determine the lead (Pb2+) and cadmium (Cd2+) by differential pulse anodic stripping voltammetry (DPASV). The electrochemical properties of the composite film modified glassy carbon electrode were investigated. It is found that the prepared Nafion-G composite film not only exhibited improved sensitivity for the metal ion detections, but also alleviated the interferences due to the synergistic effect of graphene nanosheets and Nafion. The linear calibration curves ranged from 0.5 μg L−1 to 50 μg L−1 for Pb2+ and 1.5 μg L−1 to 30 μg L−1 for Cd2+, respectively. The detection limits (S/N = 3) were estimated to be around 0.02 μg L−1 for Pb2+ and Cd2+. The practical application of the proposed method was verified in the water sample determination.  相似文献   

17.
Di J  Zhang F 《Talanta》2003,60(1):31-36
This paper described the determination of trace manganese using linear sweep voltammetry at a pretreatment glassy carbon electrode. The glassy carbon electrode pretreated by electrochemical method in the 0.1 mol l−1 NaOH solution greatly improved the electrode responsibility in the determination of manganese(II). The barrier to the detection of low manganese concentration was overcome by means of autocatalytic effect of manganese oxide deposited on the electrode in advance. Under the optimum experiments condition (0.04 mol l−1 NH3-NH4Cl buffer solution, pH 9.0), the linear range was 4×10−8 to 1×l0−6 mol l−1 Mn(II) for linear sweep voltammetry and 1×10−9 to 4×10−8 mol l−1 Mn(II) for convolution voltammetry. The relative standard deviation for 2×10−8 mol l−1 Mn(II) is 3.4%. The proposed method is simple, rapid, sensitive and selective. It had been applied to the determination of trace manganese in samples with satisfactory results.  相似文献   

18.
A novel biosensor for determination of d-amino acids (DAAs) in biological samples by using an electrode based on immobilization of a thermostable d-Proline dehydrogenase (d-Pro DH) within an agar gel membrane was developed. The electrode was simply prepared by spin-coating the agar solution with the d-Pro DH on a glassy carbon (GC) electrode.An electrocatalytic oxidation current of 2,6-dichloroindophenol (DCIP) was observed at −100 mV vs. Ag/AgCl with the addition of 5 and 20 mmol L−1d-proline. The current response and its relative standard deviation were 0.15 μA and 7.6% (n = 3), respectively, when it was measured in a pH 8.0 phosphate buffer solution containing 10 mmol L−1d-proline and 0.5 mmol L−1 DCIP at 50 °C. The current response of d-proline increased with increase of the temperature of the sample solution up to 70 °C. The electrocatalytic response at the d-Pro DH/agar immobilized electrode subsequently maintained for 80 days. Finally, the d-Pro DH/agar immobilized electrode was applied to determination of DAAs in a human urine sample. The determined value of DAAs in the human urine and its R.S.D. were 1.39 ± 0.12 mmol L−1 and 8.9% (n = 3), respectively.  相似文献   

19.
C. Velasco-Aguirre 《Talanta》2010,82(2):796-4507
The electrochemical behavior and the analytical application of the selective serotonin agonist naratriptan (N-methyl-3-(1-methyl-4-piperidyl)indole-5-ethanesulfonamide) are presented herein. Naratriptan exhibits an anodic response in aqueous media over a broad pH range (pH 2-12), as determined by differential pulse voltammetry and cyclic voltammetry using glassy carbon electrodes. This response is irreversible in nature, diffusion-controlled and probably caused by the oxidation of the naratriptan indole moiety. The differential pulse voltammetry technique was performed in 0.1 mol L−1 Britton-Robinson buffer (pH = 3), which elicited the most reproducible results. The percentage of naratriptan recovery was 102.1 ± 1.8%, and the limits of detection and quantitation were 9.5 × 10−6 and 2.0 × 10−5 mol L−1, respectively. Selectivity trials revealed that the oxidation signal of the drug was not disturbed by the presence of excipients or degradation products. Thus, we conclude that the method presented herein is useful for the quantification of naratriptan in pharmaceutical drugs and that this method requires no separations or extractions. Finally, this voltammetric method was successfully applied to determine the quantity and the content uniformity of naratriptan in drug tablets. A comparison of this technique to the standard high-performance liquid chromatography technique was conducted at the end of our study.  相似文献   

20.
The preparation and electrochemical characterization of a carbon paste electrode modified with layered birnessite-type manganese oxide for use as a sodium sensor is described. The effects of powder synthesis process (sol-gel and redox precipitation) for birnessite on the electrochemical activity of the sensor was investigated by cyclic voltammetry. The carbon paste electrode modified with birnessite-type manganese oxide that was synthesized by the sol-gel method showed a best electrochemical for sodium ions. The detection is based on the measurement of anodic current generated by oxidation of Mn(III) to Mn(IV) at the surface of the electrode and consequently the sodium ions extraction into the birnessite structure. The best voltammetric response was obtained for an electrode composition of 15% (w/w) birnessite oxide in the paste, a TRIS buffer solution of pH 8.0 and a scan rate of 50 mV s−1. A sensitive linear voltammetric response for sodium ions was obtained in the concentration range of 7.89 × 10−5 to 3.49 × 10−4 mol L−1 with a slope of 37.5 μA L mmol−1 and a detection limit (3σ/slope) of 3.43 × 10−5 mol L−1 using cyclic voltammetry. Under the working conditions, the proposed method was successfully applied to determination of sodium ions in urine samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号