首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chang G  Tatsu Y  Goto T  Imaishi H  Morigaki K 《Talanta》2010,83(1):61-65
Optical biosensor arrays for rapidly determining the glucose concentrations in a large number of beverage and blood samples were developed by immobilizing glucose oxidase (GOD) on oxygen sensor layer. Glucose oxidase was first encapsulated in silica based gels through sol-gel approach and then immobilized on 96-well microarrays integrated with oxygen sensing film at the bottom. The oxygen sensing film was made of an organically modified silica film (ORMOSIL) doped with tris(4,7-diphenyl-1,10-phenanthroline) ruthenium dichloride (Ru(dpp)3Cl2). The oxidation reaction of glucose by glucose oxidase could be monitored through fluorescence intensity enhancement due to the oxygen consumption in the reaction. The luminescence changing rate evaluated by the dynamic transient method (DTM) was correlated with the glucose concentration with the wide linear range from 0.1 to 5.0 mM (Y = 13.28X − 0.128, R = 0.9968) and low detection limit (0.06 mM). The effects of pH and coexisting ions were systemically studied. The results showed that the optical biosensor arrays worked under a wide range of pH value, and normal interfering species such as Na+, K+, Cl, PO43−, and ascorbic acid did not cause apparent interference on the measurement. The activity of glucose oxidase was mostly retained even after 2-month storage, indicating their long-term stability.  相似文献   

2.
A monolithic silica gel matrix with entrapped glucose oxidase was constructed as a bioactive element in an optical biosensor for glucose determination. Physicochemical and biochemical characterizations of the catalytic matrix were performed, and the intrinsic fluorescence of immobilised glucose oxidase (GOD) was investigated in the UV and visible range by performing steady state and time course measurements. In all cases, the silica gel matrix proved to be a suitable support for optical biosensing owing to its superior optical properties (e.g., high transmittance and reliable fluorescence and GOD absorption spectra after immobilisation). From steady state measurements, calibration curves were obtained as a function of glucose concentration. When time course measurements were performed, the silica gel support displayed a larger linear calibration range and higher sensitivity than other immobilisation systems. In addition, a glucose optical biosensor was developed and characterised using as catalytic element GOD immobilised on a gel disk bound to a bundle of optical fibres.  相似文献   

3.
A glucose biosensor with enzyme immobilised by sol–gel technology was constructed and evaluated. The glucose biosensor reported is based on encapsulated GOX within a sol–gel glass, prepared with 3-aminopropyltriethoxy silane, 2-(3,4-epoxycyclohexyl)-ethyltrimetoxy silane and HCl. A flow system incorporating the amperometric biosensor constructed was developed for the determination of glucose in the 1×10−4–5×10−3 mol l−1 range with a precision of 1.5%. The results obtained for the analysis of electrolytic solution for iv administration and human serum samples showed good agreement between the proposed method and the reference procedure, with relative error <5%.  相似文献   

4.
A new concept is described for monitoring a biomolecule with a sensor having an enzyme entrapped in a conducting polymer. This is based on the sensitivity of the electroactive polymer itself to changes of pH in solution. The concept has been investigated for a glucose sensor with glucose oxidase (GOD) immobilized in a polypyrrole (PPy) layer on an inert platinum electrode. Measurements with a Pt/PPy/GOD electrode for glucose concentrations in the physiological range gave a linear correlation with logarithm of concentration over one decade with a satisfactory dynamic response. There was practically no change of slope or range of linear response to glucose after several days of use; this was in contrast to the amperometric response of the detector when there was about a 50% loss of sensitivity.  相似文献   

5.
Li C  Liu Y  Li L  Du Z  Xu S  Zhang M  Yin X  Wang T 《Talanta》2008,77(1):455-459
NiO hollow nanospheres were synthesized by controlled precipitation of metal ions with urea using carbon microspheres as templates, which were for the first time adopted to construct a novel amperometric glucose biosensor. Glucose oxidase was immobilized on the surface of hollow nanospheres through chitosan-assisted cross-linking technique. Due to the high specific active sites and high electrocatalytic activity of NiO hollow nanospheres, the constructed glucose biosensors exhibited a high sensitivity of 3.43 μA/mM. The low detection limit was estimated to be 47 μM (S/N = 3), and the Michaelis-Menten constant was found to be 7.76 mM, indicating the high affinity of enzyme on NiO hollow nanospheres to glucose. These results show that the NiO hollow nanospheres are a promising material to construct enzyme biosensors.  相似文献   

6.
An optical glucose biosensor using a swim bladder membrane as an enzyme immobilization platform and an oxygen-sensitive membrane as an optical oxygen transducer has been developed. During the enzymatic reaction, glucose is oxidized by glucose oxidase with a concomitant consumption of dissolved oxygen resulting in an increase in the fluorescence intensity of the optical oxygen transducer. The fluorescence intensity is directly related to the glucose concentration. The effects of pH, temperature, buffer concentration, and selectivity have been studied in detail. The immobilized enzyme retained 80% of its initial activity after being kept for more than 10 months at 4°C. The glucose biosensor has been successfully applied to the determination of glucose content in human blood serum and urine samples. Martin M.F. Choi was on sabbatical leave at The University of North Carolina at Chapel Hill from July 2004 to July 2005.  相似文献   

7.
A urease optical biosensor for the determination of heavy metals based on sol-gel immobilization technique was developed. A fluorescent dye, FITC-dextran, was encapsulated and parameters including optical properties of the probe, relative enzyme activity, initial pH value and the buffer concentration for substrate preparation were investigated. In sol-gel immobilization, 1 mM Tris-HCl at pH 7.1 provided a sufficient buffer capacity for metal ion analysis as well as the enzyme activity maintenance. Also, two analytical procedures, incubated and un-incubated systems, were compared to understand the sensitivity and applicability to heavy metal analysis. The developed optical biosensor showed high reproducibility and the relative standard deviation (R.S.D.) of 5.1% (n=10) was obtained. Also, eight measurements can be completed automatically within 36 min. The biosensor has high sensitivity to Cu(II) and Cd(II) and an analytical range of 10-230 μM with a detection limit of 10 μM was achieved. Moreover, biological and environmental samples were examined to evaluate the applicability of the developed biosensor. A 19-82% of inhibition was observed when 20-45 μM metal ions were amended into tested samples, revealing that the developed system has the potential for the determination of heavy metals in real samples.  相似文献   

8.
Wu B  Zhang G  Shuang S  Choi MM 《Talanta》2004,64(2):546-553
A glucose biosensor using an enzyme-immobilized eggshell membrane and oxygen electrode for glucose determination has been fabricated. Glucose oxidase was covalently immobilized on an eggshell membrane with glutaraldehyde as a cross-linking agent. The glucose biosensor was fabricated by positioning the enzyme-immobilized eggshell membrane on the surface of a dissolved oxygen sensor. The detection scheme was based on the depletion of dissolved oxygen content upon exposure to glucose solution and the decrease in the oxygen level was monitored and related to the glucose concentration. The effect of glutaraldehyde concentration, pH, phosphate buffer concentration and temperature on the response of the glucose biosensor has been studied in detail. Common matrix interferents such as ethanol, d-fructose, citric acid, sodium benzoate, sucrose and l-ascorbic acid did not give significant interference. The resulting sensor exhibited a fast response (100 s), high sensitivity (8.3409 mg L−1 oxygen depletion/mmol L−1 glucose) and good storage stability (85.2% of its initial sensitivity after 4 months). The linear response is 1.0×10−5 to 1.3×10−3 mol L−1 glucose. The glucose content in real samples such as commercial glucose injection preparations and wines was determined, and the results were comparable to the values obtained from a commercial glucose assay kit based on a spectrophotometric method.  相似文献   

9.
An optical glucose biosensor was fabricated by entrapping glucose oxidase (GOx) within the xerogel that was derived from tetraethylorthosilicate and hybridised with hydroxyethyl carboxymethyl cellulose polymer. The entrapped-GOx was mainly characterised with its long-lasting apparent biocatalytic activity as compared to that being entrapped in only sol-gel matrix. The biocatalytic activity of the entrapped-enzyme has extended its shelf lifetime up to 3 years. This long-term stability was closely correlated with the reduction in the shrinkage process of the hybrid gel being used. In conjunction with an optical oxygen transducer, the entrapped-GOx was assembled as an optical glucose biosensor comprised a sample flow system with which the dissolved oxygen in the sample could be precisely controlled and varied. The analytical working range was tuneable within 9.0 μM-100 mM range depending on the dissolved oxygen concentration in the test solution. The time taken to reach a 95% steady signal was 6-9 min at flow rate of 1.0 mL min−1. The glucose biosensor has been satisfactorily applied to the determination of glucose contents of urine samples.  相似文献   

10.
Optical biosensor for the determination of BOD in seawater   总被引:1,自引:0,他引:1  
Jiang Y  Xiao LL  Zhao L  Chen X  Wang X  Wong KY 《Talanta》2006,70(1):97-103
An automatic sensing system was developed using an optical BOD sensing film. The sensing film consists of an organically modified silicate (ORMOSIL) film embedded with an oxygen-sensitive Ru complex. A multi-microorganisms immobilization method was developed for the BOD sensing film preparation. Three different kinds of microorganisms, Bacillus licheniformis, Dietzia maris and Marinobacter marinus from seawater, were immobilized on a polyvinyl alcohol ORMOSILs. After preconditioning, the BOD biosensor could steadily perform well up to 10 months. The linear fluctuant coefficients (R2) in the range of 0.3-40 mg L−1 was 0.985 when a glucose/glutamate BOD standard was applied. The reproducible response for the BOD sensing film could be obtained within ±2.3% of the mean value in a series of 10 samples in 5.0 mg L−1 BOD standard GGA solution. The effects of temperature, pH and sodium chloride concentration on the two microbial films were studied as well. The BOD sensing system was tested and applied for the BOD determination of seawater.  相似文献   

11.
In this study, a novel spinach (Spinacia oleracea) tissue homogenate-based biosensor for determination of oxalate in urine was developed. The biosensor was constructed by immobilizing tissue homogenate of spinach (S. oleracea) onto a high-sensitive teflon membrane of a dissolved oxygen (DO) probe. For the stability of the biosensor, general immobilization techniques were used to secure the spinach tissue homogenate in gelatin-glutaraldehyde cross-linking matrix. In the optimization and characterization studies, the amount of spinach tissue homogenate and gelatin, optimum pH, optimum temperature and thermal stability, interference effects, linear range and repeatability were investigated. A typical calibration curve for the sensor revealed a linear range of 1×10−5-10×10−5 M oxalate. In repeatability studies, variation coefficient (CV) was calculated as 1.8%. Of the various substrates tested, only oxalate was found to be specific, with a relative activity of 100%. The method was applied to the determination of oxalate in urine. The results showed that the method was applicable to oxalate determination in urine specifically and selectively.  相似文献   

12.
The aim of our present work was to develop a flow-through measuring apparatus for the determination of glucose content as model system in organic media and to compare the properties of the biosensor in organic and in aqueous solutions. Glucose oxidase (GOx) enzyme was immobilized on a natural protein membrane in a thin-layer enzyme cell, made of Teflon. The enzyme cell was connected into a flow injection analyzer (FIA) system with an amperometric detector. After optimizing the system the optimal flow rate was found at 0.8 ml min−1. In this case 50-60 samples were measured per hour. Adding ferrocene monocarboxylic acid (FMCA) to acetonitrile and to 2-propanol the optimal concentration was 5 mg l−1, while in the case of tetrabutylammonium-p-toluenesulfonate (TBATS) the optima were 2.7 and 8.0 mg l−1, respectively. With 6% buffer in acetonitrile containing FMCA more than 100 samples could be measured with the enzyme cell without any loss of activity. Measuring the hydrogen peroxide content produced in 2-propanol, the optimal concentration of buffer solution was at about 20%. The linear measuring range was 0-0.5 mM glucose in acetonitrile and 0-1.0 mM in 2-propanol.Glucose concentration of oily food samples was measured and compared with results obtained by the reference UV-photometric method. The correlation between the results measured by the two methods was very good with correlation coefficient (r) as high as 0.976.  相似文献   

13.
Improving the reproducibility of electrochemical signal remains a great challenge over the past decades. In this work, i-motif oligonucleotide probe-based electrochemical DNA (E-DNA) sensor is introduced for the first time as a regenerated sensing platform, which enhances the reproducibility of electrochemical signal, for label-free detection of glucose and urea. The addition of glucose or urea is able to activate glucose oxidase-catalyzed or urease-catalyzed reaction, inducing or destroying the formation of i-motif oligonucleotide probe. The conformational switch of oligonucleotide probe can be recorded by electrochemical impedance spectroscopy. Thus, the difference of electron transfer resistance is utilized for the quantitative determination of glucose and urea. We further demonstrate that the E-DNA sensor exhibits high selectivity, excellent stability, and remarkable regenerated ability. The human serum analysis indicates that this simple and regenerated strategy holds promising potential in future biosensing applications.  相似文献   

14.
Wu J  Zou Y  Gao N  Jiang J  Shen G  Yu R 《Talanta》2005,68(1):12-18
C/Fe nanocomposite (CFN) was synthesized by a procedure similar to an exfoliation/adsorption process to intercalate Fe3+ into graphite oxide (GO) layers and would be reduced in a H2 atmosphere. The results of X-ray diffractometry (XRD) and transimission electron microscopy (TEM) show that the form of CFN is carbon nanotube-Fe nanoparticle composite with α-Fe distributed on the nanotube wall. Paste electrode has been constructed using CFN mixed with paraffin. The electrochemical characteristics of such carbon-Fe nanocomposite paste electrode (CFNPE) has been compared with that of carbon paste electrode (CPE) and evaluated with respect to the electrochemistry of potassium ferricyanide, ascorbic acid and cysteine by cyclic voltammetry. CFNPE can accelerate the electron-transfer to improve the electrochemical reaction reversibility. To fabricate the third-generation glucose biosensor, glucose oxidase (GOD) was immobilized on CFNPE surface with Nafion covered after a pretreatment. Oxygen, ascorbic acid and uric acid have no interference with the glucose detection. The biosensor displays a remarkable sensitivity and stability and the results used in the determination of glucose in the human serum samples are satisfactory.  相似文献   

15.
An optical biosensor for urea based on urease enzyme immobilised on functionalised calcium carbonate nanoparticles (CaCO3-NPs) was successfully developed in this study. CaCO3-NPs were synthesised from discarded cockle shells via a simple and eco-friendly approach, followed by surface functionalisation with succinimide ester groups. The fabricated biosensor is comprised of two layers. The first (bottom layer) contained functionalised NPs covalently immobilised to urease, and the second (uppermost layer) was alginate hydrogel physically immobilised to the pH indicator phenolphthalein. The biosensor provided a colorimetric indication of increasing urea concentrations by changing from colourless to pink. Quantitative urea analysis was performed by measuring the reflectance intensity of the colour change at a wavelength of 633.16 nm. The determination of urea concentration using this biosensor yielded a linear response range of 30–1000 mM (R2 = 0.9901) with a detection limit of 17.74 mM at pH 7.5. The relative standard deviation of reproducibility was 1.14%, with no signs of interference by major cations, such as K+, Na+, NH?+, and Mg2+. The fabricated biosensor showed no significant difference with the standard method for the determination of urea in urine samples.  相似文献   

16.
In recent years, there has been an increasing interest in the application of optical fiber sensors for in situ monitoring of chemical pollutants, including volatile organic compounds, regarding air quality assurance. In order to enhance the usefulness and applicability of this methodology to environmental analysis, a proper study of the analytical signal and an adequate calibration model are required. This contribution is focused on the model for optical fiber sensors calibration, discussing some problems associated with the estimates of the figures of merit of these analytical systems. We also suggest and discuss a calibration model based on a cumulative symmetric double sigmoidal (SDS) function, as a suitable and general alternative to the more limited and classical linear calibration model.  相似文献   

17.
The characterization of an optical sensor membrane is described for indirect determination of isoniazid. The sensing membrane was consisted of immobilized 3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine (PDT) on a triacetylcellulose membrane. The procedure is based on the reaction of Fe(III) with isoniazid in the presence of PDT. Fe(III) is reduced by isoniazid to Fe(II) which forms a complex with PDT. The complex shows an absorption maximum at 558nm. By measuring the absorbance of the complex at this wavelength, isoniazid can be determined in the range of 0.62-6.15mugmL(-1). This method was applied to the determination of isoniazid in pharmaceutical formulation and enabled the determination of isoniazid in microgram quantities.  相似文献   

18.
乙酰胆碱和胆碱化学发光生物传感器的研究   总被引:3,自引:0,他引:3  
宋正华  章竹君  范文哲 《化学学报》1998,56(12):1207-1213
将具有分子识别功能的乙酰胆碱酯酶和胆碱氧化酶及进行换能反应的luminol和Cu^2^+分别固定在多孔玻璃和离子交换剂的柱中,组成流动注射式胆碱和乙酰胆碱化学发光传感器,让传感器分子识别反应和换能反应在各自最佳pH值下进行。这一新型生物传感器优化了发光量子产率,避免了在传感元件上直接发光所产生的散射干扰。测定乙酰胆碱和胆碱的线性范围达到1~1000pmol,检测限为500fmol,每次测定时间为2min,寿命为6个月,已用于鼠脑及人血清中乙酰胆碱和胆碱的测定。  相似文献   

19.
光导纤维电化学发光葡萄糖传感器的研究   总被引:7,自引:0,他引:7  
以碳糊为固定化载体 ,将葡萄糖氧化酶固定在碳糊电极上 ,制成了光导纤维电化学发光葡萄糖生物传感器。葡萄糖的酶催化反应、鲁米诺的电化学氧化和化学发光反应在电极表面同时发生 ,因此该传感器的信号响应在 1 0 s内达到发光强度峰值。葡萄糖浓度在 1 .0× 1 0 -5~ 2 .0× 1 0 -2 mol/L范围内与发光强度呈线性关系 ,检出限为 6.4× 1 0 -6mol/L,可应用于市售饮料中葡萄糖的测定  相似文献   

20.
Abdullah J  Ahmad M  Heng LY  Karuppiah N  Sidek H 《Talanta》2006,70(3):527-532
The development of an optical biosensor based on immobilization of 3-methyl-2-benzothiazolinone hydrazone (MBTH) in hybrid nafion/sol-gel silicate film and tyrosinase in chitosan film for the detection of phenolic compounds has been described. Tyrosinase was immobilized in chitosan film deposited on the hybrid nafion/sol-gel silicate film containing MBTH. The enzymatic oxidation product of phenolic compounds were stabilized through formation of adduct with MBTH to produce a maroon color adduct. The color intensity of adduct was found to increase proportionally with the increase of the substrate concentrations after 5 min exposure. The linearity of the biosensor towards phenol, catechol and m-cresol were in the respective concentration range of 0.5-7.0, 0.5-10.0 and 1.0-13.0 mg/L with detection limit of 0.18, 0.23 and 0.43 mg/L, respectively. The biosensor shows a good stability for at least 3 months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号