首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A procedure for the extraction and determination of methyl mercury and mercury (II) in fish muscle tissues and sediment samples is presented. The procedure involves extraction with 5% (v/v) 2-mercaptoethanol, separation and determination of mercury species by HPLC-ICPMS using a Perkin-Elmer 3 μm C8 (33 mm × 3 mm) column and a mobile phase 3 containing 0.5% (v/v) 2-mercaptoethanol and 5% (v/v) CH3OH (pH 5.5) at a flow rate 1.5 ml min−1 and a temperature of 25 °C. Calibration curves for methyl mercury (I) and mercury (II) standards were linear in the range of 0-100 μg l−1 (r2 = 0.9990 and r2 = 0.9995 respectively). The lowest measurable mercury was 0.4 μg l−1 which corresponds to 0.01 μg g−1 in fish tissues and sediments. Methyl mercury concentrations measured in biological certified reference materials, NRCC DORM - 2 Dogfish muscle (4.4 ± 0.8 μg g−1), NRCC Dolt - 3 Dogfish liver (1.55 ± 0.09 μg g−1), NIST RM 50 Albacore Tuna (0.89 ± 0.08 μg g−1) and IRMM IMEP-20 Tuna fish (3.6 ± 0.6 μg g−1) were in agreement with the certified value (4.47 ± 0.32 μg g−1, 1.59 ± 0.12 μg g−1, 0.87 ± 0.03 μg g−1, 4.24 ± 0.27 μg g−1 respectively). For the sediment reference material ERM CC 580, a methyl mercury concentration of 0.070 ± 0.002 μg g−1 was measured which corresponds to an extraction efficiency of 92 ± 3% of certified values (0.076 ± 0.04 μg g−1) but within the range of published values (0.040-0.084 μg g−1; mean ± s.d.: 0.073 ± 0.05 μg g−1, n = 40) for this material. The extraction procedure for the fish tissues was also compared against an enzymatic extraction using Protease type XIV that has been previously published and similar results were obtained. The use of HPLC-HGAAS with a Phenomenox 5 μm Luna C18 (250 mm × 4.6 mm) column and a mobile phase containing 0.06 mol l−1 ammonium acetate (Merck Pty Limited, Australia) in 5% (v/v) methanol and 0.1% (w/v) l-cysteine at 25 °C was evaluated as a complementary alternative to HPLC-ICPMS for the measurement of mercury species in fish tissues. The lowest measurable mercury concentration was 2 μg l−1 and this corresponds to 0.1 μg g−1 in fish tissues. Analysis of enzymatic extracts analysed by HPLC-HGAAS and HPLC-ICPMS gave equivalent results.  相似文献   

2.
A preconcentration method based on the adsorption of palladium-dimethylglyoxime (DMG) complex on silica gel for the determination of palladium at trace levels by atomic absorption spectrometry (AAS) has been developed. The retained palladium as Pd(DMG)2 complex was eluted with 1 mol l−1 HCl in acetone. The effect of some analytical parameters such as pH, amount of reagent and the sample volume on the recovery of palladium was examined in synthetic solutions containing street dust matrix. The influence of some matrix ions on the recovery of palladium was investigated by using the developed method when the elements were present both individually and together. The results showed that 2500 μg ml−1 Na+, K+, Mg2+, Al3+ and Fe3+; 5000 μg ml−1 Ca2+ ; 500 μg ml−1 Pb2+; 125 μg ml−1 Zn2+; 50 μg ml−1 Cu2+ and 25 μg ml−1 Ni2+ did not interfere with the palladium signal. At the optimum conditions determined experimentally, the recovery for palladium was found to be 95.3±1.2% at the 95% confidence level. The relative standard deviation and limit of detection (3s/b) of the method were found to be 1.7% and 1.2 μg l−1, respectively. In order to determine the adsorption behaviour of silica gel, the adsorption isotherm of palladium was studied and the binding equilibrium constant and adsorption capacity were calculated to be 0.38 l mg−1 and 4.06 mg g−1, respectively. The determination of palladium in various samples was performed by using both flame AAS and graphite furnace AAS. The proposed method was successfully applied for the determination of palladium in the street dust, anode slime, rock and catalytic converter samples.  相似文献   

3.
A determining technique of sulfonamides (SAs) (sulfamonomethoxine (SMM), sulfadimethoxine (SDM), and sulfaquinoxaline (SQ)) in eggs, without use of organic solvents, is developed utilizing a high-performance liquid chromatography (HPLC) interfaced with a photo-diode array detector. The sample preparation was performed by homogenizing with perchloric acid solution using a handy ultrasonic-homogenizer followed by a centrifugal ultra-filtration unit. An analytical column and an isocratic mobile phase for HPLC are a reversed-phase C4 column ( mm i.d.) and 0.18 mol l−1 citric acid solution, respectively. The proposed technique was shown to be linear (r>0.998) over the concentration range 0.1-2.0 μg g−1. Average recoveries of three SAs (spiked 0.05, 0.1, 0.15, and 0.2 μg g−1) ranged from 80.3 to 88.4%, with relative standard deviations (R.S.D.s) between 3.4 and 5.8%. The practical detection limits and total time required for the analysis of one sample were < 0.05 μg g−1 and <30 min, respectively. In all the processes, no organic solvents were used at all.  相似文献   

4.
A.S. Alves Ferreira 《Talanta》2007,72(3):1223-1229
This paper deals on the determination of Strychnine, a potent and dangerous pesticide and the analytical procedure is based on the photo-induced chemiluminescence of the pesticide by means of the Multicommutation continuous-flow methodology. Small segments of the pesticide solution were sequentially alternated with segments of the solution for adjusting the suitable medium for the photodegradation. The required time of UV irradiation was obtained by stopped-flow during 150 s; then, the resulting solution formed alternated segments with the oxidizing solution containing 5 × 10−3 mol l−1 Ce(IV) in 0.6 mol l−1 nitric acid. The calibration range, from 2 μg l−1 to 50 mg l−1, resulted in a linear behaviour over the range 25 μg l−1 to 20 mg l−1 and fitting the equation: I = 4706x + 624 with a correlation coefficient of 0.9955. The limit of detection was 2 μg l−1 and the sample throughput 15 h−1. After testing the influence of a large series of potential interferents, the method was applied to different kinds of samples.  相似文献   

5.
In the present work, thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) was employed for Cu and Zn determination in bovine milk and fruit juice samples without any pretreatment. TS-FF-AAS system was optimized and a sample volume of 300 μl was injected into the carrier stream (0.014 mol l−1 HNO3 at a flow rate of 0.4 ml min−1), and it was introduced into a hot Ni tube. The detection limits obtained for Cu and Zn in aqueous solution were 2.2 and 0.91 μg l−1, respectively, and 3.2 μg l−1 for Cu in a medium containing water-soluble tertiary amines. The relative standard deviations varied from 2.7 to 4.2% (n=12). Sample preparation was carried out by simple dilution in water or in water-soluble tertiary amines medium. Accuracy was checked by performing addition-recovery experiments as well as by using reference materials (whole milk powder, non-fat milk powder, and infant formula). Recoveries varied from 97.7 to 105.3% for Cu and Zn. All results obtained for reference materials were in agreement with certified values at a 95% confidence level.  相似文献   

6.
A simple method for cadmium and lead determination in foods by beam injection flame furnace atomic absorption spectrometry (BIFF-AAS) was proposed. Food slurries were prepared by transferring an exact amount of cryogenic-ground homogenized material (50-100 mg) to centrifuge tubes, followed by addition of 5 ml (up to 2.8 mol l−1) nitric acid solution and sonication in an ultrasonic bath during 5-10 min. Thereafter, slurries were diluted with water to 10 ml, centrifuged during 5 min at 5400 rpm and 400 μl aliquot of the supernatant was analyzed by BIFF-AAS. The detection limits based on peak height measurements were 0.03 μg g−1 Cd and 1.6 μg g−1 Pb for 2% (m/v) slurry (200 mg/10 ml). For method validation, the certified reference materials Pig Kidney (BCR 186) and Rice Flour (NIES 10) were used. Quantitative cadmium and lead recoveries were obtained and no statistical differences were found at 95% level by applying the t-test.  相似文献   

7.
The use of a permeation liquid membrane system for the preconcentration and separation of nickel in natural and sea waters and subsequent determination by atomic absorption spectroscopy is presented. 2-Hydroxybenzaldehyde N-ethylthiosemi-carbazone (2-HBET) in toluene is used as the active component of the liquid membrane. A study strategy based on a simplex design has been followed. Several chemical and physical parameters were optimized. Maximum permeation coefficient was obtained at a feed solution pH of 9.4, 0.3 mol l−1 of HNO3 in the stripping solution and 1.66 mmol l−1 of 2-HBTE in toluene as carrier. The precision of the method was 4.7% at 95% significance level and a detection limit of 0.012 μg l−1 of nickel was achieved. The preconcentration procedure showed a linear response within the studied concentration range from 3 to 500 μg l−1 of Ni in the feed solution. The method was validated with different spiked synthetic seawater and certified reference water samples: TMDA-62 and LGC 6016, without matrix interferences and showing good concordance with the certified values, being the relative errors −5.9% and −2.2%, respectively. Under optimal conditions, the average preconcentration yield for real seawater samples was 98 ± 5%, with a nickel preconcentration factor of 20.83 and metal concentrations ranging between 2.8 and 5.4 μg l−1.  相似文献   

8.
《Analytica chimica acta》2003,481(2):283-290
In the present paper, an on-line system for preconcentration and determination of zinc by Flame Atomic Absorption Spectrometry (FAAS) is proposed. It is based in the sorption of zinc(II) ions on a minicolumn packed with polyurethane foam loaded with 2-[2′-(6-methyl-benzothiazolylazo)]-4-bromophenol (Me-BTABr) reagent. Chemical and flow variables as pH effect, sample flow rate and eluent concentration were optimized using univariate methodology. The results demonstrated that zinc can determinate using the sample pH in the range of 6.5-9.2, sample flow rate of 6.0 ml min−1, and the elution step using 0.10 mol l−1 hydrochloric acid solution at flow rate of 5.5 ml min−1. In these conditions, an enrichment factor of 23 and a sampling rate of 48 samples per hour were achieved. The detection limit (DL, 3σ) as IUPAC recommendation was 0.37 μg l−1 and the precision (assessed as the relative standard deviation, R.S.D.) reached values of 5.9-1.8% in zinc solutions of 1.0-10.0 μg l−1 concentration, respectively. The method was successfully applied to the determination of trace amounts of zinc in natural water samples from Salvador (Brazil).  相似文献   

9.
The present paper is dealing with an analytical strategy based on coupling photodegradation, chemiluminescence and multicommutation continuous-flow methodology for the determination of the pesticide Propanil, a common herbicide. The pesticide solution is inserted as small segments sequentially alternated with segments of the solution for adjusting the suitable medium for the photodegradation. Both flow-rates (sample and medium) are adjusted to required time for photodegradation, 2.0 min; and then, the resulting solution is also sequentially inserted as segments alternated with segments of the oxidizing solutions system, 1.00 × 10−4 mol l−1 potassium permanganate in 2.00 mol l−1 sulphuric acid medium. The calibration range, from 10 μg l−1 to 25 mg l−1, resulted in a linear behaviour over the range 10 μg l−1-5 mg l−1 and fitting the linear equation: I = 780.30C + 95.28; correlation coefficient 0.9999. The limit of detection was 8 μg l−1 and the sample throughput 20 h−1. After testing the influence of a large series of potential interferents the method is applied to water samples obtained from different places and to one formulation. The method is valid for the determination of other pesticides from the same chemical family, namely: alachlor, flumetsulam, furalaxyl and ofurace. Calibration graphs, limits of detection, repeatability and determination in water samples are obtained for each reported pesticide.  相似文献   

10.
A chitosan resin derivatized with N-methyl-d-glucamine (CCTS-NMDG) was synthesized by using a cross-linked chitosan (CCTS) as base material. The N-methyl-d-glucamine (NMDG) moiety was attached to the amino group of CCTS through the arm of chloromethyloxirane. The adsorption behavior of 59 elements on the synthesized resin was systematically examined by using the resin packed in a mini-column, passing water samples through it and measuring the adsorbed elements in eluates by ICP-MS. The CCTS-NMDG resin shows high ability in boron sorption with the capacity of 0.61 mmol ml−1 (= 2.1 mmol g−1). The sorption kinetics of this resin was faster than that of the commercially available resins. Other advantages of the synthesized resin are: (1) quantitative collection of boron at neutral pH regions; (2) complete removal of large amounts of matrices; (3) no loss of efficiency over prolonged usage; (4) effective collection of boron in wide range concentration using a mini column containing 1 ml resin; (5) complete elution of boron with 1 mol l−1 nitric acid. The resin was applied to the collection/concentration of boron in water samples. Boron in tap water and river water was found to be in the range of 6-8 μg l−1. The limit of detection (LOD) of boron after pretreatment with CCTS-NMDG resin and measurement by ICP-MS was 0.07 μg l−1 and the limit of quantification (LOQ) was 0.14 μg l−1 when the volume of each sample and eluent was 10 ml.  相似文献   

11.
Liu Y  Chang X  Wang S  Guo Y  Din B  Meng S 《Talanta》2004,64(1):160-166
A highly sensitive and selective solid-phase spectrophotometric method for the determination of sub-μg l−1 level nickel(II) is described. Nickel(II) was sorbed on a styrene-divinylbenzene-type resin Amberlite XAD-4 as a Ni(II)-o-carboxylphenyldiazoaminoazobenzene (o-CDAA) complex. At pH 9.0, resin phase absorbances at 588 and 800 nm were measured directly with an apparent molar absorptivity of 2.95×107 g mol−1 cm−1. The linear range of the determination was 1.2-41 μg g−1 resin. The detection limit and the quantification limit were found to be 0.24 and 0.76 μg g−1 resin, respectively. The relative standard deviation of 10 replicate determinations of 1.0 μg nickel(II) in 100 ml sample was of 1.5%. The tolerance limit of coexistent ions was also investigated. Most of them are in tolerable amount. For practical analyses, 1 ml acetylacetone used can eliminate the interferences caused by Cu and Fe. The procedure was validated by analysis a certified water reference material (GBW 08618 Beijing, China) and a tomato leaf certified reference material (GBW 08402 Beijing, China) with the results in agreement with the certified values. The method was applied to the determination of nickel(II) in water and vegetable samples with satisfactory results.  相似文献   

12.
A flow-batch system was developed for the determination of Fe(III) in estuarine waters with high variability in salinity. The method is based on the catalytic effect of iron(III) on the oxidation rate of N,N-dimethyl-p-phenylenediammonium dichloride (DmPD) by hydrogen peroxide and the formed product is spectrophotometrically monitored at 554 nm. A controlled addition of sodium chloride to every assayed sample is accomplished for in-line individual salinity matching.The proposed system processes about 30 samples h−1 and yields reproducible results. Relative standard deviations were estimated as <1.5% after 10 injections of typical samples (10.0-50.0 μg l−1 Fe; ca. 0.5 mol l−1 Cl). Synthetic samples (15.0 μg l−1 Fe; 0.25-1.0 mol l−1 NaCl) were efficiently processed, and no significant differences in results were found at a probability level of 99.7%. The method works for the full range of salinities. Only 120 μg DmPD are consumed per determination. The analytical curve is linear up to about 60 μg l−1 Fe (r>0.999; n=5) and the detection limit is 5 μg l−1 Fe. Results are in agreement with graphite furnace atomic absorption spectrometry.  相似文献   

13.
Praveen RS  Daniel S  Rao TP  Sampath S  Rao KS 《Talanta》2006,70(2):437-443
A sensitive and efficient flow injection preconcentration and matrix-separation technique using exfoliated graphite (EG) as column material was developed prior to flame atomic absorption spectrometry (FAAS) determination of palladium(II) in street/fan blade dust and rock samples. The method is based on the sorption of palladium(II)—diethylammonium dithiocarbamate chelate (which was found to be better among various thioligands) complex on to EG material and its subsequent elution with acidified methanol (0.01 M HCl in methanol). Using 8 ml of the sample, the detection limit achieved was 1.0 μg l−1. The accuracy of the method developed was checked by analysing certified reference material SARM-7. The precision obtained for five successive determination of 100 μg l−1 of palladium(II) was 2.4%. The performance of EG material was compared with allotropes of carbon in terms of pH, chelate concentration, weight of column material, sensitivity enhancement (w.r.t. conventional FAAS), detection limit, calibration range, selectivity and precision. Furthermore, performance of the EG material packed column was compared with commercially available C18 bonded silica gel/alumina columns for on-line FIA-FAAS determination of palladium(II).  相似文献   

14.
Dissolved reactive phosphorus (DRP) was determined as orthophosphate (PO4-P) in fresh and saline water samples by flow-injection (FI) amperometry, without and with in-valve column preconcentration. Detection is based on reduction of the product formed from the reaction of DRP with acidic molybdate at a glassy carbon working electrode (GCE) at 220 mV versus the Ag/AgCl reference electrode. A 0.1 M potassium chloride solution was used as both supporting electrolyte and eluent in the preconcentration system. For the FI configuration without preconcentration, a detection limit of 3.4 μg P l−1 and sample throughput of 70 samples h−1 were achieved. The relative standard deviations for 50 and 500 μg P l−1 orthophosphate standards were 5.2 and 5.9%, respectively. By incorporating an ion exchange preconcentration column, a detection limit of 0.18 μg P l−1 was obtained for a 2-min preconcentration time (R.S.D.s for 0.1 and 1 μg P l−1 standards were 22 and 1.0%, respectively). Potential interference from silicate, sulfide, organic phosphates and sodium chloride were investigated. Both the systems were applied to the analysis of certified reference materials and water samples.  相似文献   

15.
A new multisyringe flow injection system for total inorganic selenium determination by hydride generation-atomic fluorescence spectrometry (HGAFS) has been proposed. The flow methodology is based on the simultaneous injection of sample in the acid media (50% HCl), a reducing sodium tetrahydroborate solution (0.18%) and a solution of hydrochloric acid (50%) which are dispensed into a gas-liquid separation cell by using a multisyringe burette coupled with one multiport selection valve. The usage of the time-based injection increases the sample throughput and provides precise known volumes of sample. The hydride of selenium is delivered into the flame of an atomic fluorescence spectrometer by means of an argon flow. A hydrogen flow has been used to support the flame.The technique can be applied over a wide range of concentrations of selenium between 0.1 and 3.5 μg l−1 with good repeatability (relative standard deviation (R.S.D.) values 4.6-7% for 1 μg l−1 of Se). The detection limit of the developed technique (3σb/S) was 0.01 μg l−1. A sample throughput was 28 samples per hour (84 injections). The multisyringe technique has been validated by means of reference solid (sea lettuce) and water (hard drinking water) materials with good agreement with certified values. The analytical features were compared with those obtained by using of the commercial flow injection analysis (FIA) system. The proposed method provides a higher sampling frequency and a significant reduction of reagent and sample consumption in front the flow injection application.  相似文献   

16.
Starvin AM  Rao TP 《Talanta》2004,63(2):225-232
Diarylazobisphenol (DAB) 1 and diarylazobisphenol modified carbon 2 were synthesized and characterised. The latter has been used for solid phase extractive preconcentration and separation of trace amounts of uranium(VI) from other inorganics. In this, a column mode preconcentration of uranium(VI) was carried out in the pH range 4.0-5.0, eluted with 1.0 mol l−1 HCl and determined by an Arsenazo III spectrophotometric procedure. Calibration graphs were rectilinear over the uranium(VI) concentrations in the range 5-200 μg l−1. Five replicate determinations of 25 μg of uranium(VI) present in 1 l solution gave a mean absorbance of 0.032 with a relative standard deviation of 2.52%. The detection limit corresponding to three times the standard deviation of the blank was found to be 5 μg l−1. The accuracy of the developed preconcentration method in conjunction with the Arsenazo III procedure was tested by analysing MESS-3, a marine sediment certified reference material. Further, the above procedure has been successfully employed for analysis of uranium(VI) in soil and sediment samples.  相似文献   

17.
A procedure has been developed for the determination of bioavailable concentrations of selenium and arsenic in estuarine sediments employing inductively coupled plasma optical emission spectrometry (ICP OES) using a concomitant metals analyzer device to perform hydride generation. The optimization of hydride generation was done in two steps: using a two-level factorial design for preliminary evaluation of studied factors and a Doehlert design to assess the optimal experimental conditions for analysis. Interferences of transition metallic ions (Cd2+, Co2+, Cu2+, Fe3+ and Ni2+) to selenium and arsenic signals were minimized by using higher hydrochloric acid concentrations. In this way, the procedure allowed the determination of selenium and arsenic in sediments with a detection limit of 25 and 30 μg kg−1, respectively, assuming a 50-fold sample dilution (0.5 g sample extraction to 25 mL sample final volume). The precision, expressed as a relative standard deviation (% RSD, n = 10), was 0.2% for both selenium and arsenic in 200 μg L−1 solutions, which corresponds to 10 μg g−1 in sediment samples after acid extraction. Applying the proposed procedure, a linear range of 0.08-10 and 0.10-10 μg g−1 was obtained for selenium and arsenic, respectively. The developed procedure was validated by the analysis of two certified reference materials: industrial sludge (NIST 2782) and river sediment (NIST 8704). The results were in agreement with the certified values. The developed procedure was applied to evaluate the bioavailability of both elements in four sediment certified reference materials, in which there are not certified values for bioavailable fractions, and also in estuarine sediment samples collected in several sites of Guanabara Bay, an impacted environment in Rio de Janeiro, Brazil.  相似文献   

18.
This work assesses for the first time the potential of natural Kaolinite as adsorptive material for preconcentration of metal traces. Manganese is quantitatively retained by 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) on thermal modified Kaolinite by column method in pH range of 8.5-10.0 at flow rate of 2 ml min−1. Manganese was removed from column with 5.0 ml of H2SO4 4 mol l−1 and determined by flame atomic absorption spectrometric at 279.5 nm. In this case, 0.l μg of manganese can be concentrated from 800 ml of aqueous sample (where concentration is as low as 0.125 μg l−1). Detection limit is 4.3 μg l−1 (3 δbl m−1) and analytical curve is linear in the 0.02-10 mg l−1 in final solution with correlation coefficient 0.9997 and relative standard deviation for eight replicate determination of 5 μg of manganese in final solution is 0.71%. The interference of a large number of anions and cations has been studied in detail to optimize the conditions and method was successfully applied for determination of manganese in complex materials.  相似文献   

19.
The pyrethroid lambda-cyhalothrin is a common insecticide which is widespread in the environment. A study of the electrochemical reduction of the pesticide on a hanging mercury drop electrode (HMDE) was performed as basis for the development of a sensitive analytical method for determination of lambda-cyhalothrin in natural samples. Two electrochemical techniques—cyclic voltammetry (CV) and differential pulse voltammetry (DPV)—were applied. The study was performed in the pH range 2-13 using Britton-Robinson (B-R) buffer to control the pH of the measuring solutions and tetrabutylammonium chloride (TBAC) salt as supporting electrolyte. In DPV, a single reduction peak was observed at both pH<4.0 and pH>10.5 while two cathodic peaks were produced in the pH range 4.0-10.5. The results showed that the reduction of lambda-cyhalothrin in the measuring solution is irreversible. The limiting current was found to be diffusion-controlled and free of adsorption of the electroactive species to HMDE over the whole pH range tested. For the analytical DPV method running at pH 2 the relationship between peak current and lambda-cyhalothrin concentration was linear up to 500 μg l−1 (1.1×10−6 mol l−1) with a detection limit of 2.5 μg l−1. The repeatability in terms of relative standard deviation (n=10) was in the order of 3.5% at concentration levels of 5 and 10 μg l−1. A DPV method for determining lambda-cyhalothrin in the agrochemical formulation Karate, spiked soil and well water was developed. The recovery was about 94% in well water and 92% in soil samples at concentration range of 0.05-0.5 μg l−1 and 0.05-0.5 μg g−1, respectively.  相似文献   

20.
A novel solid phase extraction technique for the speciation of trace dissolved Fe(II) and Fe(III) in environmental water samples was developed by coupling micro-column packed with N-benzoyl-N-phenylhydroxylamine (BPHA) loaded on microcrystalline naphthalene to electrothermal vaporization inductively coupled plasma-optical emission spectrometry (ETV-ICP-OES). Various influencing factors on the separation and preconcentration of Fe(II) and Fe(III), such as the acidity of the aqueous solution, sample flow rate and volume, have been investigated systematically, and the optimized operation conditions were established. At pH 3.0 Fe(III) could be selectively retained by micro-column (20 mm × 1.4 mm, i.d.) packed with BPHA immobilized on microcrystalline naphthalene, and Fe(II) passed through the micro-column. Both Fe(II) and Fe(III) could be adsorbed by the micro-column at pH 6.5. Thus, the total Fe could be determined without the need for preoxidation of Fe(II) to Fe(III). The retained Fe(III) or the Fe(II) and Fe(III) was subsequently eluted by 0.1 ml of 1 mol l−1 HCl. The adsorption capacity of the solid phase adsorption material was found to be 45.0 mg g−1 for Fe(III) at pH 3.0 and 65.3 mg g−1 for Fe(II) at pH 6.5, respectively. The detection limit (3σ) of 0.053 μg l−1 was obtained with a practical enrichment factor of 156 at a sample volume of 17 ml. The relative standard deviations of 4.2% and 4.6% (CFe(III) = CFe(II) = 10 μg l−1, n = 7) for Fe(III) and total iron were found, respectively. The method was successfully applied to the determination of trace Fe(II) and Fe(III) in environmental water samples (East Lake water, local tap water and mineral water). In order to validate the method, the developed method was applied to the determination of total iron in certified materials of NIES NO.10-b rice flour and GBW07605 tea leaves, and the results obtained were in good agreement with the certified values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号