首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The new concept of stopped-in-loop flow analysis (SIL-FA) is proposed, and an SIL-FA method for the catalytic determination of vanadium is demonstrated. In an SIL format, a sample solution merges with reagent(s), and the well-mixed solution is loaded into a loop. The solution in the loop is separated by a six-way switching valve from the main stream. While the reaction proceeds in the stationary loop, the SIL-FA system does not need to establish a baseline continuously. This leads to a reduction in reagent consumption and waste generation compared with traditional flow injection analysis.  相似文献   

2.
A liquid-liquid extraction flow analysis procedure for the spectrophotometric determination of molybdenum in plants at μg l−1 level is described. The flow network comprised a set of solenoid valves assembled to implement the multicommutation approach under microcomputer control. Radiation source (LED, 475 nm), detector (photodiode) and separation chamber were nested together with the flow cell comprising a compact unit. The consumption of reagents (potassium thiocyanate and stannous chloride) and also extracting solvent (isoamyl alcohol) were optimized to 32 mg and 200 μl per determination, respectively. Accuracy was assessed by comparing results with those obtained with ICP-OES and no significant difference at 95% confidence level was observed. Other favorable characteristics such as a linear response ranging from 25 to 150 μg l−1 molybdenum (r=0.999); detection limit of 4.6 μg l−1 sample throughput of 25 determinations per hour and relative standard deviation of 2.5% (n=10) were also achieved.  相似文献   

3.
For the needs of photometric determination of creatinine according to Jaffe protocol a dedicated paired emitter detector diode (PEDD) detector has been developed. This PEDD device has been constructed in the compact form of flow-through cell (30 μL total volume and 7 mm optical pathlength) integrated with 505 nm LED-based emitter and 525 nm LED-based detector compatible with multicommutated flow analysis (MCFA) system. This fully mechanized MCFA system configured of microsolenoid valves and pumps is operating under microprocessor control. The developed analytical system offers determination of creatinine in the submillimolar range of concentrations with detection limit at ppm level. The throughput offered by the system operating according to multi-point fixed-time procedure for kinetic measurements is 15–40 samples per hour depending on the mode of measurements. The developed PEDD-based MCFA system has been successfully applied for the determination of creatinine in real samples of human urine as well as serum. The developed sampling unit used the system is free from effects caused by differences in sample viscosity.  相似文献   

4.
Wang J  Lu D  Thongngamdee S  Lin Y  Sadik OA 《Talanta》2006,69(4):914-917
Bismuth-coated glassy carbon electrodes have been successfully applied for catalytic adsorptive stripping voltammetric measurements of low levels of vanadium(V) in the presence of chloranilic acid (CAA) and bromate ion. The new protocol is based on the accumulation of the vanadium-chloranilic acid complex from an acetate buffer (pH 5.5) solution at a preplated bismuth film electrode held at −0.35 V (versus Ag/AgCl), followed by a square-wave voltammetric scan. Factors influencing the adsorptive stripping performance, including the CAA and bromate concentrations, solution pH, and accumulation potential or time have been optimized. The response compares favorably with that observed at mercury film electrodes. A linear response is observed over the 5-25 μg/L concentration range (2 min accumulation), along with a detection limit of 0.20 μg/L vanadium (10 min accumulation). High stability is indicated from the reproducible response of a 50 μg/L vanadium solution (n = 25; R.S.D. = 3.1%). Applicability to a groundwater sample is illustrated.  相似文献   

5.
An array of thermo-actuated poly(N-isopropylacrylamide) (PNIPAAm) multivalves was designed and fabricated to perform volume-based sample injection for microflow injection analysis on a glass microfluidic chip. The PNIPAAm monolithic plug valves were prepared inside the vinylized glass channels by photopolymerization in water-ethanol (1:1) medium using 2-hydroxy-2-methyl propiophenone (Darocure-1173) as the initiator and a photo-mask for micropattern transferring. Experimental conditions for the photopolymerization were studied, and the thermo-responsive behavior of the synthesized monolithic plug valves was investigated. To perform active heating and cooling of the on-chip integrated thermo-actuated valves, micro-Peltier devices were used and operation times of 3-s for opening and 7-s for closing were obtained. In the close status, a 2-mm long monolithic plug valve could endure a pressure of no higher than 0.45 MPa. The volume-based sample and reagent injector was composed of two groups of valves (total valve number of 5) and two loops. When the two groups of valves were alternatively opened and closed via thermo-actuation, the sampling loops were able to be switched between loading and injection position without any mechanical moving parts. Cooperating with syringe pumps, the microfluidic chip with the integrated sample injector has been demonstrated for microflow injection chemiluminescence detection of hydrogen peroxide. For a sampling volume of 6 nL, linear response was observed over the H2O2 concentration range of 0-2 mmol L−1, and a precision of 0.6% (RSD, n = 11) was achieved for a standard H2O2 solution 2 mmol L−1.  相似文献   

6.
Leal LO  Forteza R  Cerdà V 《Talanta》2006,69(2):500-508
In this study, a new technique by hydride generation-atomic fluorescence spectrometry (HG-AFS) for determination and speciation of inorganic arsenic using multisyringe flow injection analysis (MSFIA) is reported. The hydride (arsine) was generated by injecting precise known volumes of sample, a reducing sodium tetrahydroborate solution (0.2%), hydrochloric acid (6 M) and a pre-reducing solution (potassium iodide 10% and ascorbic acid 0.2%) to the system using a multisyringe burette coupled with one multi-port selection valve. This solution is used to pre-reduce As(V) to As(III), when the task is to speciate As(III) and As(V). As(V) is determined by the difference between total inorganic arsenic and As(III). The reagents are dispensed into a gas-liquid separation cell. An argon flow delivers the arsine into the flame of an atomic fluorescence spectrometer. A hydrogen flow has been used to support the flame. Nitrogen has been employed as a drier gas (Fig. 1).Several variables such as sample and reagents volumes, flow rates and reagent concentrations were investigated in detail. A linear calibration graph was obtained for arsenic determination between 0.1 and 3 μg l−1. The detection limit of the proposed technique (3σb/S) was 0.05 μg l−1. The relative standard deviation (R.S.D.) of As at 1 μg l−1 was 4.4 % (n = 15). A sample throughput of 10 samples per hour was achieved. This technique was validated by means of reference solid and water materials with good agreement with the certified values. Satisfactory results for speciation of As(III) and As(V) by means of the developed technique were obtained.  相似文献   

7.
We have developed a simple and low-cost flow injection system coupled to a quadruple ICP-MS for the direct and continuous determination of multi-element in microdialysates. To interface microdialysis sampling to an inductively coupled plasma mass spectrometer (ICP-MS), we employed 3D printing to manufacture an as-designed sample load/inject valve featuring an in-valve sample loop for precise handling of microliter samples with a dissolved solids content of 0.9% NaCl (w/v). To demonstrate the practicality of our developed on-line system, we applied the 3D printed valve equipped a 5-μL sample loop to minimize the occurrence of salt matrix effects and facilitate an online dynamic monitoring of extracellular calcium and zinc ions in living rat brains. Under the practical condition (temporal resolution: 10 h−1), dynamic profiling of these two metal ions in living rat brain extracellular fluid after probe implantation (the basal values for Ca and Zn were 12.11 ± 0.10 mg L−1 and 1.87 ± 0.05 μg L−1, respectively) and real-time monitoring of the physiological response to excitotoxic stress elicited upon perfusing a solution of 2.5 mM N-methyl-d-aspartate were performed.  相似文献   

8.
This paper reported the development of a microfludic device for the rapid detection of viable and nonviable microbial cells through dual labeling by fluorescent in situ hybridization (FISH) and quantum dots (QDs)-labeled immunofluorescent assay (IFA). The coin sized device consists of a microchannel and filtering pillars (gap = 1-2 μm) and was demonstrated to effectively trap and concentrate microbial cells (i.e. Giardia lamblia). After sample injection, FISH probe solution and QDs-labeled antibody solution were sequentially pumped into the device to accelerate the fluorescent labeling reactions at optimized flow rates (i.e. 1 and 20 μL/min, respectively). After 2 min washing for each assay, the whole process could be finished within 30 min, with minimum consumption of labeling reagents and superior fluorescent signal intensity. The choice of QDs 525 for IFA resulted in bright and stable fluorescent signal, with minimum interference with the Cy3 signal from FISH detection.  相似文献   

9.
Eom IY  Dasgupta PK 《Talanta》2006,69(4):906-913
A frequency-selective absorbance detection approach and its applications are described. First, a digital signal processor-lock-in amplifier (DSP-LIA)-based absorbance detector was evaluated. Compared to a simple operational amplifier (TL082CP)-based detector, the DSP-LIA-based detector showed lower noise levels, but the relative advantage was reduced under very low photocurrent levels (down to few nA). A 7 cm pathlength flow cell with this commercial LIA-based detector exhibited excellent Beer's law linearity (r2 = 0.9999) and a noise level of 7 micro absorbance units (μAU). The limit of detection (LOD, S/N = 3) for methyl orange (MO) was 7 nM with this detector. Finally, as a more affordable alternative to an LIA, a balanced demodulator integrated circuit chip was used to fabricate a dual wavelength-frequency-selective LED-based absorbance detector. This device successfully compensated refractive index (RI) effect and turbidity effect in test flow systems. The LOD for MO with this system was 8 nM.  相似文献   

10.
A dual-purpose gas chromatographic injection device, capable of injecting pressurized liquid sample of up to 5000 psig and gas sample with a volume as high as 5000 μL, has been successfully developed and implemented. The injection device is synergized by the effectiveness of a classical flash vaporization of a syringe injection and the reliability of a proven rotary valve. Depending on the matrix involved, this injection device employs either a commercially available four-port internal valve for liquid sampling or a six-port external valve for gas sampling, a modified removable needle used in standard liquid syringe, and an auxiliary flow stream that can be either mechanical or electronic flow controlled for solute transfer. For pressurized liquid, the device was found suitable of up to nC16 hydrocarbon with no observable carry-over despite the injection device was operating at ambient temperature. A relative standard deviation of less than 2% (n = 20) was obtained for hydrocarbon compounds ranging from nC8 to nC16. For gas injection, the device performed well even under difficult chromatographic conditions such as with a low column inlet pressure of less than 1 psig. A relative standard deviation of less than 0.5% (n = 10) was obtained for reactive sulfur compounds such as alkyl mercaptans. The device can be operated manually or automated with pneumatic or electrical actuator, is platform neutral, and can be moved amongst instruments without hardware modification as well as implemented for on-line or in situ applications. In this paper, the utility of the device was also demonstrated with selected GC applications of industrial significance.  相似文献   

11.
A dielectric barrier discharge (DBD) was used as a new atmospheric optical emission detector for the determination of trace nitrogen in pure argon gas in this work. The whole system was composed of an ac ozone generation device for power supply, a six-way valve, a laboratory-built DBD device and a USB2000 charge coupled device (CCD). Trace nitrogen in argon was detected at nitrogen molecular emission line of 337 nm. This method features with several advantages: atmospheric working condition, low power consumption (≤ 12 W), simple and cheap instrumentation, fast response and high sensitivity and accuracy. Under the optimized conditions, the limits of detection can be down to 34 ppb.  相似文献   

12.
A fast, economic and sensitive chemiluminescence (CL) method has been developed for the analysis of cetrizine hydrochloride (CET) in pharmaceutical formulations and in biological fluids. The CL method is based on the oxidation of tris(2,2′-bipyridyl)ruthenium(II) (Ru (bipy)32+) by peroxydisulphate in a two-chip device. Up to 180 samples can be analysed per hour, consuming only minute quantities of reagents. Three instrumental setups were tested to find the most economical, sensitive and high throughput setup. In the first setup, a continuous flow of sample and CL reagents was used, whereas in the second setup, a fixed volume (2 μL) of (Ru (bipy)32+) was introduced into a continuous infusion of peroxydisulphate and the sample. In the third design, a fixed volume of sample (2 μL) was injected while the CL reagents were continuously infused. Compared to the first setup, a 200% signal enhancement was observed in the third setup. Various parameters that influence the CL signal intensity, including pH, flow rates and reagent concentrations, were optimized. A linear response was observed over the range of 50 μg L−1 to 6400 μg L−1 (R2 = 0.9959) with RSD values of 1.1% (n = 15) for 1000 μg L−1. The detection limit was found to be 15 μg L−1 (S/N = 3). The amount of consumed sample was only 2 μL, from which the detected amount of CET was found to be 6.5 × 10−14 mol. This procedure was successfully applied to the analysis of CET in pharmaceutical formulations and biological fluids.  相似文献   

13.
A monosegmented flow system was employed for the determination of low contents of phosphate in natural water. In this approach, sample and reagents are simultaneously injected to a PTFE reaction coil where the homogenization of the mixture occurs while the monosegment is pumped forwards the photometric detector. The proposed system was evaluated by determining phosphate ion, based on the reaction of association between molybdophosphate and malachite green. It was evaluated individually the best concentration of the reagent solution in relation to blank signal (absorbance of the blank) and the sensitivity of the method. A factorial design was proposed to explain the contribution of each component on the formation of the ion association complex, evaluating the individual contributions as well as the synergistic and antagonistic effects. With the established conditions, phosphorous is determined in the concentration range of 5.0-75 μg P PO43− l−1 (r=0.9992), with a detection limit of 0.70 μg P PO43− l−1 and a relative standard deviation of 2% (20 μg P PO43− l−1, n=8). The proposed method has a sampling frequency of 72 h−1.  相似文献   

14.
A multi-reversed flow system software-assisted was developed for improvement of sensitivity in flow analysis. The performance of the flow system proposed was evaluated by using as a model the conventional Griess’ colorimetric reaction for determination of nitrite in waters. The manifold incorporated three 3-way solenoid valves, a relay box solenoid actuated, a peristaltic pump, and a photometric detector. A tailored software was designed and written in Visual Basic 6.0 which allows full control of all flow system components and simultaneous acquisition and processing of the data. The sensitivity measured as the slope of the calibration curve was improved 2.5- and 1.4-fold regarding those obtained by continuous- and stopped-flow systems, respectively. Other valuable features such as analytical throughput of 55 determinations per hour, limit of detection of 5 μg L−1 (3σblank/slope), relative standard deviation < 2% (n = 8), and a linear dynamic range up to 1800 μg L−1 were also achieved.  相似文献   

15.
The development of a rapid method for the determination of perchlorate in rain and drinking waters is presented. In the optimised method, an on-line preconcentration technique was employed utilising a 10 mm × 4.6 mm Phenomenex Onyx monolithic guard cartridge coated with (N-dodecyl-N,N-dimethylammonio)undecanoate for selective preconcentration, with subsequent elution into a fixed volume injection loop (‘heart-cut’ of the concentrator column eluate) and separation using an IonPac AS16 (250 mm × 2 mm) anion exchange column and a potassium hydroxide concentration gradient. Off-line optimisation studies showed that the coated monolith displayed near quantitative recovery up to 50 μg/L perchlorate level from standards prepared in reagent water. On-line preconcentration of perchlorate obtained detection limits down to 56 ng/L in reagent water, between 70 and 80 ng/L in rainwater samples and 2.5 μg/L in non-pretreated drinking water. After an additional sample sulphate/carbonate removal step, low ng/L perchlorate concentrations could also be observed in drinking water. The complete on-line method exhibited reproducibility for n = 10 replicate runs of R.S.D. ≤ 3% for peak height/area and R.S.D. = 0.08% for retention time. The optimised method, of 20 min total duration, was applied to the determination of perchlorate by standard addition in 10 rainwater samples and one drinking water sample. Concentrations of perchlorate present ranged from below the detection limit for four rainwater samples, with another three samples showing perchlorate present at between 70 and 100 ng/L, and one sample showing perchlorate present at 2.8 μg/L. Levels of 1.1 μg/L in the drinking water sample were also recorded.  相似文献   

16.
A new multisyringe flow injection system for total inorganic selenium determination by hydride generation-atomic fluorescence spectrometry (HGAFS) has been proposed. The flow methodology is based on the simultaneous injection of sample in the acid media (50% HCl), a reducing sodium tetrahydroborate solution (0.18%) and a solution of hydrochloric acid (50%) which are dispensed into a gas-liquid separation cell by using a multisyringe burette coupled with one multiport selection valve. The usage of the time-based injection increases the sample throughput and provides precise known volumes of sample. The hydride of selenium is delivered into the flame of an atomic fluorescence spectrometer by means of an argon flow. A hydrogen flow has been used to support the flame.The technique can be applied over a wide range of concentrations of selenium between 0.1 and 3.5 μg l−1 with good repeatability (relative standard deviation (R.S.D.) values 4.6-7% for 1 μg l−1 of Se). The detection limit of the developed technique (3σb/S) was 0.01 μg l−1. A sample throughput was 28 samples per hour (84 injections). The multisyringe technique has been validated by means of reference solid (sea lettuce) and water (hard drinking water) materials with good agreement with certified values. The analytical features were compared with those obtained by using of the commercial flow injection analysis (FIA) system. The proposed method provides a higher sampling frequency and a significant reduction of reagent and sample consumption in front the flow injection application.  相似文献   

17.
We designed and prepared a micro biosensing system consisting of a flow through system with a sub-micro liter injection valve and a sub-micro liter volume bioreactor. An electrochemical detector was combined with the reactor for immediate detections. The volumes of the reactor and the sample loop for the injection were 850 nl and 320 nl, respectively. This paper described about the characteristics of the sensing system in the case of histamine detection for food analysis. Histamine oxidase from KAIT-B-007 was prepared by using a gene recombination technique and they were immobilized with chitosan beads (? = 70-105 μm). The detection less than one minute after injection made possible fast analysis for histamine. The biosensing system also showed a high performance for histamine detection in wide range of 1 μM-1 mM. In addition, we practically measured histamine content in raw tuna stored at room temperature and 35 °C up to 96 h. As a result of the comparison between our sensing system and HPLC method, there was good agreement. These results show that our microfluidic biosensing system has the potential to assist miniaturization with small sample volume and short determination time for a sequential food analysis.  相似文献   

18.
We report a new device for the estimation of the content of chlorophyll a pigment in water samples as an indicator of water quality. The extraction of the pigment from water was also optimized. 10 mL of water was filtered through a nylon filter (45 μm pore size and 13 mm of diameter), after the chlorophylls were dissolved by immersing the filter in 1 mL of a low non-hazardous solvent as ethanol. An in-valve in-tube SPME device coupled to capillary liquid chromatography with diode array detection was designed. A capillary column of 70 cm in length (0.32 mm i.d. coated with 5% diphenyl-95% polydimethylsiloxane, 3 μm coating thickness) was used as the loop of the injection valve for preconcentration and a Zorbax SB C18 (SiO2-based) 150 mm × 0.5 mm i.d., 5 μm column (Agilent) was used as analytical column. The achieved detection limit was 0.05 μg L−1 and the working range of concentrations was 0.1-1 μg L−1. % RSD values between 2 and 11 were obtained. Chlorophyll a in several water matrices was determined with good results in presence of other pigments such as chlorophyll b, pheophytin a and pheophytin b.  相似文献   

19.
A facile fluorescent method for the determination of hydrazine in aqueous solution with excellent sensitivity was developed. 5-Chlorosalicylaldehyde (CS), a readily commercially available compound, was applied as the derivatization reagent in this work. Under the addition of CS to hydrazine aqueous solution (ethanol/water/acetic acid = 30/66/4), an intense fluorescence enhancement was observed at 570 nm with a large stokes shift of ∼170 nm. Upon the optimal condition, the fluorescence intensity linearly increased with the concentration of hydrazine in the range of 0.2 and 9.3 μM with a correlation coefficient of R2 = 0.9995 (n = 10) and a detection limit of 0.08 μM. The R.S.D. was 2.0% (n = 5). Determination of hydrazine in river and drinking water samples was successfully performed. Hydrazine vapor sensing by the proposed method was also reported.  相似文献   

20.
A gas chromatography–mass spectrometric (GC–MS) method has been established for the determination of hydrazine in drinking water and surface water. This method is based on the derivatization of hydrazine with ortho-phthalaldehyde (OPA) in water. The following optimum reaction conditions were established: reagent dosage, 40 mg mL−1 of OPA; pH 2; reaction for 20 min at 70 °C. The organic derivative was extracted with methylene chloride and then measured by GC–MS. Under the established condition, the detection and the quantification limits were 0.002 μg L−1 and 0.007 μg L−1 by using 5.0-mL of surface water or drinking water, respectively. The calibration curve showed good linearity with r2 = 0.9991 (for working range of 0.05–100 μg L−1) and the accuracy was in a range of 95–106%, and the precision of the assay was less than 13% in water. Hydrazine was detected in a concentration range of 0.05–0.14 μg L−1 in 2 samples of 10 raw drinking water samples and in a concentration range of 0.09–0.55 μg L−1 in 4 samples of 10 treated drinking water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号