首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose a network model with a fixed number of nodes and links and with a dynamic which favors links between nodes differing in connectivity. We observe a phase transition and parameter regimes with degree distributions following power laws, P(k)∼kP(k)k-γ, with γγ ranging from 0.20.2 to 0.50.5, small-world properties, with a network diameter following D(N)∼logND(N)logN and relative high clustering, following C(N)∼1/NC(N)1/N and C(k)∼kC(k)k-α, with αα close to 3. We compare our results with data from real-world protein interaction networks.  相似文献   

2.
3.
4.
5.
We study the partition function ZG(nk,k)(Q,v)ZG(nk,k)(Q,v) of the Q  -state Potts model on the family of (non-planar) generalized Petersen graphs G(nk,k)G(nk,k). We study its zeros in the plane (Q,v)(Q,v) for 1?k?71?k?7. We also consider two specializations of ZG(nk,k)ZG(nk,k), namely the chromatic polynomial PG(nk,k)(Q)PG(nk,k)(Q) (corresponding to v=−1v=1), and the flow polynomial ΦG(nk,k)(Q)ΦG(nk,k)(Q) (corresponding to v=−Qv=Q). In these two cases, we study their zeros in the complex Q  -plane for 1?k?71?k?7. We pay special attention to the accumulation loci of the corresponding zeros when n→∞n. We observe that the Berker–Kadanoff phase that is present in two-dimensional Potts models, also exists for non-planar recursive graphs. Their qualitative features are the same; but the main difference is that the role played by the Beraha numbers for planar graphs is now played by the non-negative integers for non-planar graphs. At these integer values of Q, there are massive eigenvalue cancellations, in the same way as the eigenvalue cancellations that happen at the Beraha numbers for planar graphs.  相似文献   

6.
7.
In the study of fractional quantum Hall states, a certain clustering condition involving up to four integers has been identified. We give a simple proof that particular Jack polynomials with α=−(r−1)/(k+1)α=(r1)/(k+1), (r−1)(r1) and (k+1)(k+1) relatively prime, and with partition given in terms of its frequencies by [n00(r−1)sk0r−1k0r−1k?0r−1m][n00(r1)sk0r1k0r1k?0r1m] satisfy this clustering condition. Our proof makes essential use of the fact that these Jack polynomials are translationally invariant. We also consider nonsymmetric Jack polynomials, symmetric and nonsymmetric generalized Hermite and Laguerre polynomials, and Macdonald polynomials from the viewpoint of the clustering.  相似文献   

8.
9.
A comprehensive and high-precision magnetoresistance (MR) Δρ/ρ(H,T)Δρ/ρ(H,T) and magnetization M(H,T) measurements have been carried out for two well known and archetypal magnetic strongly correlated electron systems—CeAl2 and CeB6. It was shown that the main Brillouin-type component of MR in these magnetic heavy fermion compounds can be consistently interpreted in the frameworks of a simple relation between resistivity and magnetization—Δρ/ρ∼M2Δρ/ρM2 obtained by Yosida [Phys. Rev. 107 (1957) 396]. A local magnetic susceptibility χloc(T,H)=(1/H*(d(Δρ/ρ)/dH))1/2χloc(T,H)=(1/H*(d(Δρ/ρ)/dH))1/2 was deduced directly from this part of MR and compared in details with the data of bulk susceptibility χ(T,H) measurements. Two additional contributions to MR have been also deduced for CeAl2 ((i) linear (∼H) and (ii) nanoscale ferromagnetic components) and applied for a characterization of spin polarons in this magnetic material. The dependencies χloc(T,H) and χ(T,H) obtained in this study for CeB6 and CeAl2 allow us to analyze the H–T magnetic phase diagram in these magnetic heavy fermion compounds.  相似文献   

10.
We consider the Q-state Potts model in the random-cluster formulation, defined on finite   two-dimensional lattices of size L×NL×N with toroidal boundary conditions. Due to the non-locality of the clusters, the partition function Z(L,N)Z(L,N) cannot be written simply as a trace of the transfer matrix TLTL. Using a combinatorial method, we establish the decomposition Z(L,N)=l,Dkb(l,Dk)Kl,DkZ(L,N)=l,Dkb(l,Dk)Kl,Dk, where the characters Kl,Dk=iN(λi)Kl,Dk=i(λi)N are simple traces. In this decomposition, the amplitudes b(l,Dk)b(l,Dk) of the eigenvalues λiλi of TLTL are labelled by the number l=0,1,…,Ll=0,1,,L of clusters which are non-contractible with respect to the transfer (N  ) direction, and a representation DkDk of the cyclic group ClCl. We obtain rigorously a general expression for b(l,Dk)b(l,Dk) in terms of the characters of ClCl, and, using number theoretic results, show that it coincides with an expression previously obtained in the continuum limit by Read and Saleur.  相似文献   

11.
In this second paper, we prove a necessity theorem about the topological origin of phase transitions. We consider physical systems described by smooth microscopic interaction potentials VN(q)VN(q), among N   degrees of freedom, and the associated family of configuration space submanifolds {Mv}vR{Mv}vR, with Mv={q∈RN|VN(q)?v}Mv={qRN|VN(q)?v}. On the basis of an analytic relationship between a suitably weighed sum of the Morse indexes of the manifolds {Mv}vR{Mv}vR and thermodynamic entropy, the theorem states that any possible unbound growth with N   of one of the following derivatives of the configurational entropy S(−)(v)=(1/N)logMvdNqS()(v)=(1/N)logMvdNq, that is of |kS(−)(v)/∂vk||kS()(v)/vk|, for k=3,4k=3,4, can be entailed only by the weighed sum of Morse indexes. Since the unbound growth with N of one of these derivatives corresponds to the occurrence of a first- or of a second-order phase transition, and since the variation of the Morse indexes of a manifold is in one-to-one correspondence with a change of its topology, the Main Theorem of the present paper states that a phase transition necessarily stems from a topological transition in configuration space. The proof of the theorem given in the present paper cannot be done without Main Theorem of paper I.  相似文献   

12.
13.
14.
Based on the particular orderings introduced for the positive roots of finite-dimensional basic Lie superalgebras, we construct the explicit differential operator representations of the osp(2r|2n)osp(2r|2n) and osp(2r+1|2n)osp(2r+1|2n) superalgebras and the explicit free field realizations of the corresponding current superalgebras ospk(2r|2n)osp(2r|2n)k and ospk(2r+1|2n)osp(2r+1|2n)k at an arbitrary level k. The free field representations of the corresponding energy–momentum tensors and screening currents of the first kind are also presented.  相似文献   

15.
Employing linearized Vlasov–Maxwell system of equations, the whistler instability is discussed for a semi-relativistic bi-Maxwellian distribution. The dispersion relations are analyzed analytically along with the graphical representation and the estimates of the growth rate and instability threshold condition are also presented in the limiting cases i.e., ξ±=(ω?Ω)/kvt?1ξ±=(ω?Ω)/kvt?1 (resonant case) and ξ±?1ξ±?1 (non-resonant case). Further for field free case i.e., B0=0B0=0, the growth rates for Weibel instability in a semi-relativistic bi-Maxwellian plasma are presented for both the limiting cases.  相似文献   

16.
17.
18.
We propose a new method of unifying gravity and the Standard Model by introducing a spin-foam model. We realize a unification between an SU(2)SU(2) Yang–Mills interaction and 3D   general relativity by considering a constrained Spin(4)∼SO(4)Spin(4)SO(4) Plebanski action. The theory is quantized à la   spin-foam by implementing the analogue of the simplicial constraints for the Spin(4)Spin(4) symmetry, providing a way to couple Yang–Mills fields to spin-foams. A natural 4D extension of the theory is introduced. We also present a way to recover 2-point correlation functions between the connections as a first way to implement scattering amplitudes between particle states, aiming to connect Loop Quantum Gravity to new physical predictions.  相似文献   

19.
Motivated by the necessity of discrete ZNZN symmetries in the MSSM to insure baryon stability, we study the origin of discrete gauge symmetries from open string sector U(1)U(1)?s in orientifolds based on rational conformal field theory. By means of an explicit construction, we find an integral basis for the couplings of axions and U(1)U(1) factors for all simple current MIPFs and orientifolds of all 168 Gepner models, a total of 32 990 distinct cases. We discuss how the presence of discrete symmetries surviving as a subgroup of broken U(1)U(1)?s can be derived using this basis. We apply this procedure to models with MSSM chiral spectrum, concretely to all known U(3)×U(2)×U(1)×U(1)U(3)×U(2)×U(1)×U(1) and U(3)×Sp(2)×U(1)×U(1)U(3)×Sp(2)×U(1)×U(1) configurations with chiral bi-fundamentals, but no chiral tensors, as well as some SU(5)SU(5) GUT models. We find examples of models with Z2Z2 (R-parity) and Z3Z3 symmetries that forbid certain B and/or L violating MSSM couplings. Their presence is however relatively rare, at the level of a few percent of all cases.  相似文献   

20.
The strong coupling limit of Einstein gravity in d+1d+1 dimensions gives rise to a quantum theory where after factorization of the conformal factor mode SL(d,R)/SO(d)SL(d,R)/SO(d) nonlinear sigma-models are spatially coupled by the diffeomorphism constraint. A functional integral representation for the theory?s propagation kernel is derived in completions of the proper time gauge which manifestly invokes only physical gauge invariant degrees of freedom. In the weak field limit it reduces to the propagation kernel of massless and transversal-traceless free fields. For strong fields a covariant normal coordinate expansion is developed which covers the configuration manifold globally. Its leading order approximant resembles a semiclassical propagation kernel but without the need to solve the classical constraints. The results have implications for the ground state structure of quantum gravity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号