首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, we show thatin any finite system, the binary friction tensor for two Brownian particlescannot be directly estimated from an evaluation of the microscopic Green-Kubo formula, involving the time integral of force-force autocorrelation functions. This pitfall is associated with a subtle inversion of the thermodynamic and long-time limits and leads to spurious results for the estimates of the friction matrix based on molecular dynamics simulations. Starting from a careful analysis of the coupled Langevin equations for two interacting Brownian particles, we derive a method to circumvent these effects and extract the binary friction tensor from the correlation function matrix of the instantaneous forces exerted by the bath particles on the fixed Brownian particles, and from the relaxation of the total momentum of the bath in afinite system. The general methodology is applied to the case of two hard or soft Brownian spheres in a bath of light particles. Numerical estimates of the relevant correlation functions and of the resulting self and mutual components of the matrix of friction tensors are obtained by molecular dynamics simulations for various spacings between the Brownian particles. This paper is dedicated to B. Jancovici on the occassion of his 65th birthday.  相似文献   

2.
We present an extension of relativistic single-particle distribution function for weakly interacting particles at local thermodynamical equilibrium including spin degrees of freedom, for massive spin 1/2 particles. We infer, on the basis of the global equilibrium case, that at local thermodynamical equilibrium particles acquire a net polarization proportional to the vorticity of the inverse temperature four-vector field. The obtained formula for polarization also implies that a steady gradient of temperature entails a polarization orthogonal to particle momentum. The single-particle distribution function in momentum space extends the so-called Cooper–Frye formula to particles with spin 1/2 and allows us to predict their polarization in relativistic heavy ion collisions at the freeze-out.  相似文献   

3.
Z. Haba 《Physica A》2011,390(15):2776-2786
We obtain a non-linear generalization of the relativistic diffusion. We discuss diffusion equations whose non-linearity is a consequence of quantum statistics. We show that the assumptions of the relativistic invariance and an interpretation of the solution as a probability distribution substantially restrict the class of admissible non-linear diffusion equations. We consider relativistic invariant as well as covariant frame-dependent diffusion equations with a drift. In the latter case we show that there can exist stationary solutions of the diffusion equation besides the equilibrium solution corresponding to the quantum or Tsallis distributions. We define the relative entropy as a function of the diffusion probability and prove that it is monotonically decreasing in time when the diffusion tends to equilibrium. We discuss its relation to the thermodynamic behavior of diffusing particles.  相似文献   

4.
We study the physics of the ideal relativistic rotating gas at thermodynamical equilibrium and provide analytical expressions of the momentum spectra and polarization vector for the case of massive particles with spin 1/2 and 1. We show that the finite angular momentum J entails an anisotropy in momentum spectra, with particles emitted orthogonally to J having, on average, a larger momentum than along its direction. Unlike in the non-relativistic case, the proper polarization vector turns out not to be aligned with the total angular momentum with a non-trivial momentum dependence.  相似文献   

5.
We introduce a naturally-defined totally invariant spacetime energy expression for general relativity incorporating the contribution from gravity. The extension links seamlessly to the action integral for the gravitational field. The demand that the general expression for arbitrary systems reduces to the Tolman integral in the case of stationary bounded distributions, leads to the matter-localized Ricci integral for energy–momentum in support of the energy localization hypothesis. The role of the observer is addressed and as an extension of the special relativistic case, the field of observers comoving with the matter is seen to compute the intrinsic global energy of a system. The new localized energy supports the Bonnor claim that the Szekeres collapsing dust solutions are energy-conserving. It is suggested that in the extreme of strong gravity, the Heisenberg Uncertainty Principle be generalized in terms of spacetime energy–momentum.  相似文献   

6.
Relativistic particle subjected to a general four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity uμuμ + c2 = 0, where c is the speed of light in vacuum. In the general case, four-forces are non-potential, and the relativistic particle is a non-Hamiltonian system in four-dimensional pseudo-Euclidean space-time. We consider non-Hamiltonian and dissipative systems in relativistic mechanics. Covariant forms of the principle of stationary action and the Hamilton’s principle for relativistic mechanics of non-Hamiltonian systems are discussed. The equivalence of these principles is considered for relativistic particles subjected to potential and non-potential forces. We note that the equations of motion which follow from the Hamilton’s principle are not equivalent to the equations which follow from the variational principle of stationary action. The Hamilton’s principle and the principle of stationary action are not compatible in the case of systems with nonholonomic constraint and the potential forces. The principle of stationary action for relativistic particle subjected to non-potential forces can be used if the Helmholtz conditions are satisfied. The Hamilton’s principle and the principle of stationary action are equivalent only for a special class of relativistic non-Hamiltonian systems.  相似文献   

7.
Pierre-Henri Chavanis 《Physica A》2011,390(9):1546-1574
We develop the kinetic theory of Brownian particles with long- and short-range interactions. Since the particles are in contact with a thermal bath fixing the temperature T, they are described by the canonical ensemble. We consider both overdamped and inertial models. In the overdamped limit, the evolution of the spatial density is governed by the generalized mean field Smoluchowski equation including a mean field potential due to long-range interactions and a generically nonlinear barotropic pressure due to short-range interactions. This equation describes various physical systems such as self-gravitating Brownian particles (Smoluchowski-Poisson system), bacterial populations experiencing chemotaxis (Keller-Segel model) and colloidal particles with capillary interactions. We also take into account the inertia of the particles and derive corresponding kinetic and hydrodynamic equations generalizing the usual Kramers, Jeans, Euler and Cattaneo equations. For each model, we provide the corresponding form of free energy and establish the H-theorem and the virial theorem. Finally, we show that the same hydrodynamic equations are obtained in the context of nonlinear mean field Fokker-Planck equations associated with generalized thermodynamics. However, in that case, the nonlinear pressure is due to the bias in the transition probabilities from one state to the other leading to non-Boltzmannian distributions while in the former case the distribution is Boltzmannian but the nonlinear pressure arises from the two-body correlation function induced by the short-range potential of interaction. As a whole, our paper develops connections between the topics of long-range interactions, short-range interactions, nonlinear mean field Fokker-Planck equations and generalized thermodynamics. It also justifies from a kinetic theory based on microscopic processes, the basic equations that were introduced phenomenologically to describe self-gravitating Brownian particles, chemotaxis and colloidal suspensions with attractive interactions.  相似文献   

8.
R. Chakrabarti 《Physica A》2010,389(8):1571-1584
Investigating the canonical ensemble of a classical relativistic ideal gas in the Tsallis nonextensive framework we evaluate the specific heat in the extreme relativistic case in a closed form by directly employing the third constraint scenario. The canonical ensemble of N particles in D dimensions is well defined for the choice of the deformation parameter in the range . In the instance of a classical relativistic ideal gas with arbitrarily massive particles a perturbative scheme in the nonextensivity parameter (1−q) is developed by employing an infinite product expansion of the q-exponential, and a direct transformation of the internal energy from the second to the third constraint picture. All thermodynamic quantities may be uniformly evaluated to any desired perturbative order.  相似文献   

9.
The dynamics of an overdamped Brownian particle in a thermal bath that contains a dilute solution of active particles is studied. The particle moves in a harmonic potential and experiences Poisson shot-noise kicks with specified amplitude distribution due to moving active particles in the bath. From the Fokker–Planck equation for the particle dynamics, the stationary solution for the displacement distribution is derived along with the moments characterizing mean, variance, skewness, and kurtosis, as well as finite-time first and second moments. An effective temperature is also computed through the fluctuation–dissipation theorem and show that equipartition theorem holds for all zero-mean kick distributions, including those leading to non-Gaussian stationary statistics. For the case of Gaussian-distributed active kicks, a re-entrant behavior from non-Gaussian to Gaussian stationary states and a heavy-tailed leptokurtic distribution across a wide range of parameters are found as seen in recent experimental studies. Further analysis reveals statistical signatures of the irreversible dynamics of the particle displacement in terms of the time asymmetry of cross-correlation functions. Fruits of the work is the development of an compact inference scheme that may allow experimentalists to extract the rate and moments of underlying shot-noise solely from the statistics the particle position.  相似文献   

10.
One-particle systems in relativistically accelerating reference frames can be associated with a class of unitary representations of the group of arbitrary coordinate transformations, an extension of the Wigner–Bargmann definition of particles as the physical realization of unitary irreducible representations of the Poincaré group. Representations of the group of arbitrary coordinate transformations become necessary to define unitary operators implementing relativistic acceleration transformations in quantum theory because, unlike in the Galilean case, the relativistic acceleration transformations do not themselves form a group. The momentum operators that follow from these representations show how the fictitious forces in noninertial reference frames are generated in quantum theory.  相似文献   

11.
12.
We investigate the stochastic dynamics of an one-dimensional ring with N self-driven Brownian particles. In this model neighboring particles interact via conservative Morse potentials. The influence of the surrounding heat bath is modeled by Langevin-forces (white noise) and a constant viscous friction coefficient γ. The Brownian particles are provided with internal energy depots which may lead to active motions of the particles. The depots are realized by an additional nonlinearly velocity-dependent friction coefficient γ 1(v) in the equations of motions. In the first part of the paper we study the partition functions of time averages and thermodynamical quantities (e.g. pressure) characterizing the stationary physical system. Numerically calculated non-equilibrium phase diagrams are represented. The last part is dedicated to transport phenomena by including a homogeneous external force field that breaks the symmetry of the model. Here we find enhanced mobility of the particles at low temperatures. Received 21 July 2001  相似文献   

13.
A relativistic, collisionless gas of gravitating particles all having the same proper mass (possibly equal to zero) is studied under the assumption that the oneparticle distribution function is locally ellipsoidal in momentum space with respect to some timelike vector field (observer). Liouville's equation implies that the distribution function depends only on a quadratic form in the 4- momenta, whose coefficients are a Killing tensor in the case of non- vanishing proper mass, and a conformal Killing tensor in the case of vanishing rest mass of the particles. It is suggested that cosmological models of Bianchi-type I can be described in terms of ellipsoidal momentum distribution functions whose ellipsoidal tensor is built out of the Killing vectors associated with the spatial homogeneity.  相似文献   

14.
J. M. Rubí  P. Mazur   《Physica A》1998,250(1-4)
A system of N Brownian particles suspended in a nonuniform heat bath is treated as a thermodynamic system with internal degrees of freedom, in this case their velocities and coordinates. Applying the scheme of nonequilibrium thermodynamics, one then easily obtains the Fokker-Planck equation for simultaneous Brownian motion of N particles in a temperature gradient. This equation accounts for couplings in the motion as a result of hydrodynamic interactions between particles.  相似文献   

15.
16.
We obtain a non-Markovian quantum master equation directly from the quantization of a non-Markovian Fokker–Planck equation describing the Brownian motion of a particle immersed in a generic environment (e.g. a non-thermal fluid). As far as the especial case of a heat bath comprising of quantum harmonic oscillators is concerned, we derive a non-Markovian Caldeira–Leggett master equation on the basis of which we work out the concept of non-equilibrium quantum thermal force exerted by the harmonic heat bath upon the Brownian motion of a free particle. The classical limit (or dequantization process) of this sort of non-equilibrium quantum effect is scrutinized, as well.  相似文献   

17.
《Physics letters. A》2014,378(26-27):1876-1882
The Wigner's pseudo-particle formalism has been generalized to describe quantum dynamics of relativistic particle in external potential field. As a simplest application of the developed formalism the time evolution of the 1D relativistic quantum harmonic oscillator been considered. Due to the complex structure of the evolution equation for Wigner function, the only numerical treatment is possible by combining Monte Carlo and molecular dynamics methods. Relativistic dynamics results in appearance of the new physical effects as opposed to non-relativistic case. Interesting is the complete changing of the shape of the momentum and coordinate distribution functions as well as formation of ‘unexpected’ protuberances. To analyze the influence of relativistic effects on average values of quantum operators, the dependencies on time of average momentum, position, their dispersions and energy have been compared for the non-relativistic and relativistic dynamics.  相似文献   

18.
本文指出在动量和速度空间的具有相对论性效应的共振条件的下同之处,并证明了这种差异是由在相对论性的情况下动量与速度之间的非线性关系造成的。进一步,我们讨论了如何简单地判别在何种情况下最大增长率可以存在。证明了对于的波(例如,O模和X模),无论是在动量空间还是在速度空间Wu-Lee判据给出的结论都是一样的。  相似文献   

19.
The main result of this paper is a derivation of a generalized nonlinear Langevin equation (GLE) forn interacting particles in a bath. A consequence of the derivation is that the exact form of the (generalized) fluctuation-dissipation theorem is obtained. We discuss also the relation between the memory kernel of the GLE and some corresponding correlation functions which can be easily obtained in a molecular dynamics computer experiment. In the same spirit it is shown that the approach applies to a Brownian particle subjected to a stationary external field. The technique presented in a previous paper to simulate generalized Brownian dynamics can be easily extended to the present case. Our derivation intends to clarify the uses and (possibly) abuses of the Langevin equation in Brownian dynamics studies.  相似文献   

20.
The Skorniakov-Ter-Martirosian (STM) integral equation is widely used for the quantum three-body problems of low-energy particles (e.g., ultracold atom gases). With this equation these three-body problems can be efficiently solved in the momentum space. In this approach the boundary condition for the case that all the three particles are gathered together is described by the upper limit of the momentum integral, i.e., the momentum cutoff. On the other hand, in realistic systems, the three-body recombination (TBR) process can occur when all these three particles are close to each other. In this process two particles form a deep dimer and the other particle can gain high kinetic energy and then escape from the low-energy system. In the presence of the TBR process, the momentum-cutoff in the STM equation would include a non-zero imaginary part. As a result, the momentum integral in the STM equation should be done in the complex-momentum plane. In this case the result of the integral depends on the choice of the integral path. Obviously, only one integral path can lead to the correct result. In this paper we consider how to correctly choose the integral path for the STM equation. We take the atom-dimer scattering problem in a specific ultracold atom gas as an example, and show the results given by different integral paths. Based on the result for this case we explore the reasonable integral paths for general case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号