首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sequence determination by partial methanolysis and fast atom bombardment (FAB) mass spectrometry of peptides containing cysteine and methionine was investigated. Cysteine-containing peptides require methylation of the sulphydryl group by methyl iodide to give a stable S-methylcysteinyl residue prior to partial methanolysis and mass spectrometry. Methionine-containing peptides undergo partially a methylation on sulphur during methanolysis, with formation of an S-methylsulphonium ion which under FAB conditions is extracted from the matrix and eliminates methyl sulphide in the gas phase. The presence of additional peaks due to chemical modifications or gas-phase fragmentations, however, does not interfere with the sequence information of the spectra.  相似文献   

2.
Resorcinarene-based deep cavitands alanine methyl resorcinarene acid (), alanine undecyl resorcinarene acid () and glycine undecyl resorcinarene acid (), which contain chiral amino acids, have been synthesized. The upper rim of the resorcinarene host is elongated with four identical substituents topped with alanine and glycine groups. The structures of the new resorcinarenes were elucidated by nuclear magnetic resonance (NMR), mass spectrometry (MS) and the sustained off-resonance irradiation collision induced dissociation (SORI-CID) technique in FTICR-MS. These studies revealed that eight water molecules associate to the cavitand, two for each alanine group. The alanine substituent groups are proposed to form a kite-like structure around the resorcinarene scaffold. The binding of , , and with chiral R- and S-methyl benzyl amines was studied by (1)H NMR titration, and compared to that of a binary l-tartaric acid and the monoacid phthalyl alanine (). The results show that these compounds interact with amine guests; however, with four carboxylic acid groups, they bind several amine molecules strongly while the binary l-tartaric acid only binds one amine guest strongly. The simple compound , which contains one carboxylic group, shows weak binding to the amines. The (1)H NMR titration of with primary, secondary, and tertiary chiral amines showed that it can discriminate between these three types of amines and showed chiral discrimination for chiral secondary amines.  相似文献   

3.
Partial methylation of methyl N-acetyl-β-d-neuraminate methyl glycoside using methyl iodide and silver oxide gives a mixture of methyl ethers of methyl N-acetyl-N-methyl-β-d-neuraminate methyl glycoside, which was fractionated by chloroform-water partition followed by preparative column chromatography on silica gel. After trimethylsilylation of the fractions, gas-liquid chromatography on OV-101 and mass spectrometry facilitated the identification of 13 methyl ethers.  相似文献   

4.
The synthesis and spectroscopic characterization of a cavitand-based coordination capsule 14 BF4 of nanometer dimensions is described. Encapsulation studies of large aromatic guests as well as aliphatic guests were performed by using 1H NMR spectroscopy in [D1]chloroform. In addition to the computational analysis of the shape and geometry of the capsule, an experimental approach to estimate the interior size of the cavity is discussed. The cavity provides a highly rigid binding space in which molecules with lengths of approximately 14 A can be selectively accommodated. The rigid cavity distinguished slight structural differences in the flexible alkyl-chain guests as well as the rigid aromatic guests. The detailed thermodynamic studies revealed that not only CH-pi interactions between the methyl groups on the guest termini and the aromatic cavity walls, but also desolvation of the inner cavity play a key role in the guest encapsulation. The cavity preferentially selected the hydrogen-bonded heterodimers of a mixture of two or three carboxylic acids 18-20. The chiral capsule encapsulated a chiral guest to show diastereoselection.  相似文献   

5.
New applications for your mass spectrometer —use it to measure enantiomeric excess! The enantiomeric content of very small quantities of chiral alcohols and amines has been determined by derivatization with chiral acylating agents in which mass is correlated to absolute configuration. The resultant esters and amides were then analyzed by electrospray ionization mass spectrometry (ESI-MS; shown schematically). The technique requires surprisingly low levels of diastereoselectivity in the acylation step, and is therefore generally applicable.  相似文献   

6.
Molecular capsules composed of amino acid or peptide derivatives connected to resorcin[4]arene scaffolds through acylhydrazone linkers have been synthesized using dynamic covalent chemistry (DCC) and hydrogen‐bond‐based self‐assembly. The dynamic character of the linkers and the preference of the peptides towards self‐assembly into β‐barrel‐type motifs lead to the spontaneous amplification of formation of homochiral capsules from mixtures of different substrates. The capsules have cavities of around 800 Å3 and exhibit good kinetic stability. Although they retain their dynamic character, which allows processes such as chiral self‐sorting and chiral self‐assembly to operate with high fidelity, guest complexation is hindered in solution. However, the quantitative complexation of even very large guests, such as fullerene C60 or C70, is possible through the utilization of reversible covalent bonds or the application of mechanochemical methods. The NMR spectra show the influence of the chiral environment on the symmetry of the fullerene molecules, which results in the differentiation of diastereotopic carbon atoms for C70, and the X‐ray structures provide unique information on the modes of peptide–fullerene interactions.  相似文献   

7.
Abstract

Discrimination of chiral amines by dimethyldiketopyridino-18-crown-6 (1) is studied by free energy peturbation (FEP) and molecular dynamics (MD) methods. 1 has two (S)-chiral centers and discriminates chiral amines through host-guest interactions. The optically active amines in this study are α-(1-naphthyl)ethylamine, methylbenzylamine, cyclohexylethylamine, and sec-butylamine. The trends in binding free energy differences obtained from FEP calculations were in excellent agreement with experimental results obtained in the gas phase. In order to explain the enantioselectivity of the host in terms of the host-guest interactions at the molecular level, we analyzed the structures generated by 10-ns MD simulations of host-guest complexes. The suggested chiral discrimination mechanism, the π-π interaction and the steric repulsion between the guest and the host, was verified by our MD simulation analysis.  相似文献   

8.
Chiral recognition of enantiomers by host compounds is one of the most challenging topics in modern host-guest chemistry. Amongst the well-established methods, mass spectrometry (MS) is increasingly used nowadays, due to its low detection limit, short analysis time, and suitability for analyzing mixtures and for studying chiral effects in the gas phase. The development of electrospray-ionization (ESI) techniques provides an invaluable tool to study, in the gas phase, diastereoisomeric complex ions prepared from enantiomer ions and a chiral selector. This paper reports on an ESIMS and ESIMSMS study of the molecular mechanisms that intervene in the chiral-recognition phenomena observed between amino acids and a chiral crown ether. The modified crown ether, namely (+)-([18]crown-6)-2,3,11,12-tetracarboxylic acid, is used as the chiral selector when covalently bound on a stationary phase in liquid chromatography. This study was stimulated by the fact that, except with threonine and proline, consistent elution orders were observed, which indicates that the D enantiomers interact more strongly with the chiral selector than the L enantiomers. For proline, the lack of a primary amino group is likely to be responsible for the nonresolution of the two forms, whereas the second stereogenic center on threonine could explain the reversed elution order. In light of those observations, we performed mass spectrometry experiments to understand more deeply the enantiomeric recognition phenomena, both in solution by the enantiomer-labeled guest method and in the gas phase by gas-phase ligand-exchange ion/molecule reactions. The results have been further supported by quantum chemical calculations. One of the most interesting features of this work is the identification of a nonspecific interaction between proline and the crown ether upon ESIMS analysis.  相似文献   

9.
Host-guest complexes between nucleobases or nucleosides and beta-cyclodextrin can be observed by electrospray ionization mass spectrometry (ESI-MS) and their relative abundances appear to correlate with the condensed-phase binding order. Using Fourier transform ion cyclotron resonance mass spectrometry, the extent of the interactions between the host oligosaccharide and guest species have also been examined for permethylated beta-cyclodextrin : adenine/deoxyadenosine and permethylated maltoheptaose : adenine/deoxyadenosine using gas-phase exchange reactions with the gaseous amines, n-propylamine and ethylenediamine. The ease of guest exchange in the gas-phase follows the order : deoxyadenosine > adenine > deoxycytidine > cytosine, which is in contrast to their relative binding order in solution. Collision-induced dissociation (CID) has been used to probe the fragmentation behavior of oligosaccharide : nucleobase/nucleoside complexes. Under these conditions the inclusion complexes either (a) dissociate, (b) result in cleavage of the host oligosaccharide or (c) result in cleavage of the guest molecule. This study has shown that the preferred dissociation pathway of these complexes depends on the structures of both the cyclodextrin and guest molecule.  相似文献   

10.
Achieving strong host–guest interactions between synthetic hosts and hydrophilic guests in solution is challenging because solvation effects overwhelm other effects. To resolve this issue, we transferred complexes of cucurbit[7]uril (CB[7]) and monosaccharides to the gas phase and report here their intrinsic host–guest chemistry in the absence of solvation effects. It was observed that effective host–guest interactions in the gas phase mediated by ammonium cations allow the differentiation of the monosaccharide isomers in complex with CB[7] upon vibrational excitation. The potential of the unique observation was extended to a quantitative supramolecular analytical method for the monosaccharide guests. The combination of host–guest chemistry and phase transfer presented in this study is an effective approach to overcome current limitations in supramolecular chemistry.  相似文献   

11.
The synthetic utility of S-mesitylsulfinimines for the synthesis of chiral amines and aziridines was examined through their reactions with Grignard reagents, with the ylides derived from trimethylsulfonium iodide and S-allyl-tetrahydrothiophenium bromide and through an aza-Darzens manifold, affording convenient access to a diverse range of highly substituted chiral amines and aziridines in high yields and excellent stereoselectivities.  相似文献   

12.
Normal phase liquid chromatography is a common mode for chiral separations. Many chiral amines are used as drugs or are important intermediates for drug synthesis. Electrospray ionization mass spectrometry is well known for its high sensitivity. However, when using normal phase liquid chromatography, electrospray ionization is hampered by the poor ionization efficiency of analytes from organic eluents. Continuous‐flow extractive desorption electrospray ionization, which introduces the eluents through a hypodermic needle into the electrospray plume is demonstrated here for its success to interface normal phase liquid chromatography to mass spectrometry detection. Such an approach was shown to be as or more sensitive than ultraviolet detection for a selected set of aromatic amine‐functionalized enantiomers. Also demonstrated is the direct infusion of cell extracts to monitor phospholipids from three different bacterial cells. Despite their presence in non‐electrospray‐ionization‐friendly extraction solvents, continuous‐flow extractive desorption electrospray ionization enabled the sensitive detection of phospholipids and the ability to tune ion forms through incorporation of different spray modifiers.  相似文献   

13.
Per-O-methylation of neutral carbohydrates in one step by adding dimethyl sulfoxide, powdered sodium hydroxide, and methyl iodide directly to aqueous sample is described. The influence of the water on the methylation reaction is investigated. Solid powdered sodium hydroxide is very hygroscopic and can scavenge the water from sample if an additional excess of sodium hydroxide is added. The degree of per-O-methylation of carbohydrates is checked by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Gas chromatography-mass spectrometry analysis of mono- and disaccharides from grape juice is presented.  相似文献   

14.
Chemical ionization mass spectrometry (MS) and tandem mass spectrometry (MS/MS) experiments have been performed for the structural characterization and isomeric differentiation of two series of C- and O-linked arylglycosides with potential antioxidant activity. Different amines have been used for producing gas phase chemical ionization. Depending on their proton affinity and steric hindrance, adduct ions with different stability are formed. The most stable adducts are produced by ethylamine and they have been extensively structurally characterized by experimental and theoretical approaches. Energy resolved chemical ionization tandem mass spectrometric experiments have allowed unambiguous characterization and differentiation of both the anomers differing at the configuration of the glycosidic C(1) atom, and regio- and structural isomers at extremely low concentrations, typical of mass spectrometry. This study has shown that amine chemical ionization mass spectrometry and MS/MS are powerful and versatile tools for the structural characterization of arylglycosides.  相似文献   

15.
Chiral amides derived from O-methyl mandelic acid and achiral amines underwent enantioselective alpha-methylation on treatment with LTMP followed by addition of methyl iodide; chirality transfer from an undeprotonated chiral amide into an achiral enolate in a mixed aggregate is supposed to be responsible for the asymmetric induction.  相似文献   

16.
The increasing complexity of self‐assembled supramolecules generates the need for analytical techniques that can accurately elucidate their structures. Here, we explore the ability of tandem mass spectrometry to deliver structural information on a series of self‐sorted crown ether/ammonium pseudorotaxanes. Of these intertwined molecules, different charge states are accessible and the effects of Coulomb interactions on the fragmentation pattern can be examined. Three different cases can be distinguished: (1) one or more counterions are present in the complex and compete with the crown for binding to the ammonium ion. This destabilizes the supramolecular bond. (2) In multiply charged complexes, charge repulsion significantly alters the fragmentation behavior as compared with singly charged ions. (3) If guest and host are both charged, the supramolecular bond becomes very weak. The different charge states provide different pieces of information about the supramolecules under study. Although singly charged complexes provide data on the building block connectivity, the doubly charged analogs are more reliable with respect to complex stoichiometry. As there are several factors which may cause differences in the gas phase and solution behavior of supramolecules (the presence and absence of solvation, changes in the strength of non‐covalent interactions upon ionization), it is important to establish well understood correlations between the complexes' gas‐phase behavior and their solution structures. A more detailed understanding will help to characterize the structures of even more complex supramolecular architectures by mass spectrometry. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Host–guest complexes are formed by the creation of multiple noncovalent bonds between a large molecule (the host) and smaller molecule(s) or ion(s) (the guest(s)). Ion‐mobility separation coupled with mass spectrometry nowadays represents an ideal tool to assess whether the host–guest complexes, when transferred to the gas phase upon electrospray ionization, possess an exclusion or inclusion nature. Nevertheless, the influence of the solution conditions on the nature of the observed gas‐phase ions is often not considered. In the specific case of inclusion complexes, kinetic considerations must be taken into account beside thermodynamics; the guest ingression within the host cavity can be characterized by slow kinetics, which makes the complexation reaction kinetically driven on the timescale of the experiment. This is particularly the case for the cucurbituril family of macrocyclic host molecules. Herein, we selected para‐phenylenediamine and cucurbit[6]uril as a model system to demonstrate, by means of ion mobility and collision‐induced dissociation measurements, that the inclusion/exclusion topology ratio varies as a function of the equilibration time in solution prior to the electrospray process.  相似文献   

18.
Suyog Marathe 《合成通讯》2017,47(17):1577-1581
A new series of BINOL-based molecules have been synthesized. Their characterization has been performed by adequate spectroscopic techniques. Their chiral HPLC analyses have confirmed their chiral character. The compounds possess interesting flexible geometries and have structural features suitable for exhibiting host–guest interactions.  相似文献   

19.
A novel procedure for the characterization of traces of lipophilic straight-chain aliphatic carboxylate ions in aqueous samples is described. The carboxylates are adsorbed on an Amberlyst A26 [Cl-] resin column. The resin is then dried and suspended in methyl iodide at room temperature. A gas Chromatographic analysis of the methyl iodide solution allows the determination of the carboxylates as their methyl esters. Full characterization of each carboxylate with an overall recovery over 84% from 1 ppm aqueous sample solutions is attained.  相似文献   

20.
A highly fluorescent coordination cage [Zn8L4I8] has been constructed by treating enantiopure pyridyl‐functionalized metallosalalen units (L) with zinc(II) iodide and characterized by a variety of techniques including microanalysis, thermogravimetric analysis (TGA), circular dichroism (CD) spectroscopy, and single‐crystal and powder X‐ray diffraction. Strong intermolecular π–π, CH???π, and CH???I interactions direct packing of the cage molecules to generate a 3D polycage network interconnected by pentahedral cages formed by adjacent pentamers. The cage has an amphiphilic helical cavity decorated with chiral NH functionalities capable of interactions with guest species such as saccharides. The fluorescence of the cage was greatly enhanced by five enantiomeric saccharides in solution, with enantioselectivity factors of 2.480–4.943, and by five enantiomeric amines in the solid state, with enantioselective fluorescence enhancement ratios of 1.30–3.60. This remarkable chiral sensing of both saccharides and amines with impressive enantioselectivity may result from the steric confinement of the cavity as well as its conformational rigidity. It holds great promise for the development of novel chiral cage materials for sensing applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号