首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stereocomplex mediated hydrogels have been prepared by mixing solutions of polymers of opposite chirality of either PEG-(PLA)2 triblock copolymers or PEG-(PLA)8 star block copolymers. The critical gel concentrations of the mixed enantiomer solutions were considerably lower compared to polymer solutions containing only the single enantiomer. Moreover, gel-sol transition temperatures were increased and gel regions were expanded due to stereocomplexation. Rheology measurements showed that stereocomplexed hydrogels based on PEG-(PLA)8 have higher storage moduli compared to those based on PEG-(PLA)2. Stereocomplexed hydrogels prepared from 13 wt% PEG-(PLA)2 solutions in PBS showed a storage modulus of 0.9 kPa at 37 °C, while at similar conditions stereocomplexed hydrogels of PEG-(PLA)8 showed a storage modulus of 1.9 kPa at 10 wt%.  相似文献   

2.
In this study, a highly toughened PLA was prepared through physical melt-blending with EVA at the presence of hydrophilic nanosilica and SEBS-g-MA block copolymer compatibilizer. The effect of nanosilica and compatibilizer on the morphology, mechanical properties, and linear rheology of the PLA/EVA blends was also investigated. According to TEM images, nanosilica was selectively located in the PLA matrix while some were placed on the interface between the two polymers as was also predicted by thermodynamic and kinetic analysis. Upon the addition of nanoparticles, the interfacial adhesion between the phases was enhanced and the average droplet size decreased. Interestingly, incorporation of SEBS-g-MA induced morphological changes as the spherical EVA droplets turned into a cylindrical shape. DSC results indicated that blending with EVA copolymer resulted in the reduction of crystallization of PLA matrix; however, the crystallinity increased at the presence of nanoparticles up to 5 wt%. The addition of compatibilizer considerably hindered the crystallization of the PLA phase. PLA/EVA blend containing optimum levels of nanosilica exhibited considerably enhanced tensile toughness, elongation at break, and impact strength. On the other hand, the simultaneous addition of nanoparticles and SEBS-g-MA led to synergistic toughening effects and the compatibilized blend containing nanosilica exhibited excellent impact toughness. For instance, the elongation at break of the compatibilized PLA/EVA blend containing the optimal content of nanosilica was increased from 7% to 121% (compared to neat sample). The notched Izod impact strength was also increased from 5.1 to 65 kJ/m2. Finally, the microstructure of the blends was assessed by rheological measurements.  相似文献   

3.
Poly(lactic acid) (PLA) was depolymerized by methanol in the presence of a novel catalyst: ionic liquids. It was found that the purification method of the main products in the methanolysis catalyzed by ionic liquids was simpler than that of traditional compounds, such as sulfuric acid. Qualitative analysis indicated that the main product in the methanolysis process was methyl lactate. The influences of experimental parameters, such as the amount of ionic liquids, methanolysis time, reaction temperature, and dosages of methanol on the conversion of PLA, yield of methyl lactate were investigated. Under the optimum conditions, using ionic liquid 1-butyl-3-methylimidazolium acetate ([Bmim][Ac]) as catalyst, results showed that the ionic liquid could be reused up to 6 times without apparent decrease in the conversion of PLA and yield of methyl lactate. The kinetics of the reaction was also investigated. The results indicated that the methanolysis of PLA was a first-order kinetic reaction with activation energy of 38.29 kJ/mol. In addition, a possible catalysis mechanism of the methanolysis of PLA was proposed.  相似文献   

4.
Summary: Starting from gypsum as by-product of lactic acid fabrication process, novel high performance composites have been produced by melt-blending PLA and this filler after a previous specific dehydration performed at 500 °C for min. 1h. Due to PLA sensitivity towards hydrolysis, the utilization of β-anhydrite II (AII) as filler is a prerequisite. Characterized by attractive mechanical and thermal properties due to good filler dispersion throughout the polyester matrix, these composites are interesting in biodegradable rigid packaging or technical applications. Interestingly, tensile strength of PLA – AII composites proved remarkably high, e.g. higher than 35 MPa at 50 wt-% filler content. However a decrease of impact properties has been recorded. To increase the toughness of these composites while preserving high stiffness an impact modifier based on ethylene copolymer has been mixed with both the polymer matrix and AII by melt-compounding. The effectiveness of the impact modifier was confirmed in both neat PLA and AII-based composites. Addition of 5-10 wt-% impact modifier into highly filled composites (30 to 40 wt-% filler) leads to an attractively threefold increase of impact strength with respect to the compositions without modifier, remarkable thermo-mechanical performances and good filler dispersion.  相似文献   

5.
Rheological, morphological and thermo-mechanical responses of poly(lactic acid) (PLA)/ethylene-co-vinyl-acetate copolymer (EVA) blends at EVA volume fractions varying in the range of 0–0.35 were evaluated. The micro-structural analysis demonstrated dispersive mixing at low content and co-continuous morphology at 30 wt % of EVA in PLA. Dynamic rheology demonstrated enhanced storage modulus and complex viscosity (η*) with increase in frequency of the blends indicated strong phase interaction. Cole-Cole and Han plots indicated partial miscibility and incompatibility between the polymer matrix and the dispersed phase. Dynamic mechanical analysis (DMA) revealed slight increase in damping parameters which indicated interaction or reinforcement in the blends. Additionally, the thermogravimetric analysis (TGA) of the blends showed two step degradation and enhanced thermal stability.  相似文献   

6.
Low-grade magnesium hydroxide (LG-MH) is a solid by-product that undergoes an endothermic decomposition in the temperature range of 300-750 °C. Due to its thermal behaviour and its lower cost relative to pure Mg(OH)2, it was studied as a non-halogenated flame retardant filler in a 28% vinyl acetate (VA) content poly(ethylene-co-vinyl acetate) matrix. The solid was characterized by XRF and the crystalline phases determined by XRD, composed predominantly of Mg(OH)2 and calcium and magnesium carbonates. Particle size reduction was performed by both mechanical as well as air jet milling in order to optimize the particle size distribution.Composites with different filler concentrations were prepared to evaluate the mechanical properties and flame retardancy by means of limiting oxygen index tests. LOI was also determined in specimens filled with commercial flame-retardants to analyse the effectiveness of this solid.  相似文献   

7.
Scaffolds based on biopolymers and nanomaterials with appropriate mechanical properties and high biocompatibility are desirable in tissue engineering. Therefore, polylactic acid (PLA) nanocomposites were prepared with ceramic nanobioglass (PLA/n-BGs) at 5 and 10 wt.%. Bioglass nanoparticles (n-BGs) were prepared using a sol–gel methodology with a size of ca. 24.87 ± 6.26 nm. In addition, they showed the ability to inhibit bacteria such as Escherichia coli (ATCC 11775), Vibrio parahaemolyticus (ATCC 17802), Staphylococcus aureus subsp. aureus (ATCC 55804), and Bacillus cereus (ATCC 13061) at concentrations of 20 w/v%. The analysis of the nanocomposite microstructures exhibited a heterogeneous sponge-like morphology. The mechanical properties showed that the addition of 5 wt.% n-BG increased the elastic modulus of PLA by ca. 91.3% (from 1.49 ± 0.44 to 2.85 ± 0.99 MPa) and influenced the resorption capacity, as shown by histological analyses in biomodels. The incorporation of n-BGs decreased the PLA crystallinity (from 7.1% to 4.98%) and increased the glass transition temperature (Tg) from 53 °C to 63 °C. In addition, the n-BGs increased the thermal stability due to the nanoparticle’s intercalation between the polymeric chains and the reduction in their movement. The histological implantation of the nanocomposites and the cell viability with HeLa cells higher than 80% demonstrated their biocompatibility character with a greater resorption capacity than PLA. These results show the potential of PLA/n-BGs nanocomposites for biomedical applications, especially for long healing processes such as bone tissue repair and avoiding microbial contamination.  相似文献   

8.
The non-covalent interaction of acetylated nanocrystalline cellulose (AC-NCC) with polylactic acid (PLA) in a composite blend has been studied at the micron scale by synchrotron Fourier transform infrared (FTIR) microspectroscopy. Microtomed sections of AC-NCC in PLA showed strong, localized carbonyl stretching (νC=O) absorbance characteristic of the cellulose acetylation, and this was observed on the surface of larger aggregated AC-NCC particles. A shift in the νC=O IR absorption peak of AC-NCC in PLA, relative to unblended AC-NCC was observed, which is indicative of an intermolecular interaction between AC-NCC and PLA matrix. Acetylation can therefore potentially improve the performance of the composite by enabling linkages between carbonyl groups, helping to establish a good stress transfer between the fiber and the matrix. This could in turn lead to a material with high yield elastic modulus. This is the first reported chemical imaging of acetylated nanocrystalline cellulose-based composite materials using synchrotron FTIR microspectroscopy.  相似文献   

9.
用扭摆分析研究了EVA树脂和PVC共混体系中,VA含量和共混物组成对其相容性的影响.共混的两组分的分子间相互作用对其相容性有关键的影响.用FTIR测定羰基伸缩振动谱带的位移,可表征EVA-PVC分子链间的相互作用.  相似文献   

10.
聚乳酸组织工程支架材料   总被引:24,自引:3,他引:21  
综述了生物活性因子固定化的聚乳酸-聚氨基酸衍生物共聚物和通过亲-疏水性设计的众多聚乳酸-聚氧化乙烯(PLA-PEO)共聚物的研究进展。展现了其在组织工程材料,药物控释体系和其他生物医用材料中的广泛应用前景。  相似文献   

11.
In this work, new ways of plasticizing polylactide (PLA) with low molecular poly(ethylene glycol) (PEG) were developed to improve the ductility of PLA while maintaining the plasticizer content at maximum 20 wt.% PLA. To this end, a reactive blending of anhydride-grafted PLA (MAG-PLA) copolymer with PEG, with chains terminated with hydroxyl groups, was performed. During the melt-processing, a fraction of PEG was grafted into the anhydride-functionalized PLA chains. The role of the grafted fraction was to improve the compatibility between PLA and PEG. Reactive extrusion and melt-blending of neat and modified PLA with PEG did not induce any dramatic drop of PLA molecular weight. The in situ reactive grafting of PEG into the modified PLA in PLA/PEG blends showed a clear effect on the thermal properties of PLA. It was demonstrated by DSC that the mobility gained by PLA chains in the plasticized blends yielded crystallization. The grafting of a fraction of PEG into PLA did not affect this process. However, DSC results obtained after the second heating showed an interesting effect on the Tg when 20 wt.% PEG were melt blended with neat PLA or 10 wt.% MAG-PLA. In the latter case, the Tg displayed by the reactive blend was shifted to even lower temperatures at around 14 °C, while the Tg of neat PLA and PLA blended with 20 wt.% PEG was around 60 and 23 °C, respectively. Regarding viscoelastic and viscoplastic properties, the presence of MAG-PLA does not significantly influence the behavior of plasticized PLA. Indeed, with or without MAG-PLA, elastic modulus and yield stress decrease, while ultimate strain increases with the addition of PEG into PLA.  相似文献   

12.
30 wt% aligned untreated long hemp fibre/PLA (AUL) and aligned alkali treated long hemp fibre/PLA (AAL) composites were produced by film stacking and subjected to accelerated ageing. Accelerated ageing was carried out using UV irradiation and water spray at 50 °C for four different time intervals (250, 500, 750 and 1000 h). After accelerated ageing, tensile strength (TS), flexural strength, Young's modulus (YM), flexural modulus and mode I fracture toughness (KIc) were found to decrease and impact strength (IS) was found to increase for both AUL and AAL composites. AUL composites had greatest overall reduction in mechanical properties than that for AAL composites upon exposure to accelerated ageing environment. FTIR analysis and crystallinity contents of the accelerated aged composites support the results of the deterioration of mechanical properties upon exposure to accelerated ageing environment.  相似文献   

13.
The mild UV aging of ethylene-vinyl acetate copolymer (EVA) with two vinyl acetate (VAc) contents (14, 18 wt%) was performed in a xenon arc source chamber. The degradation mechanism was analyzed via attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), gel content and high temperature gel permeation chromatography (HTGPC). Photo-chemically induced deterioration was first initiated from vulnerable VAc units. Ketone formation preceded lactone generation, especially in EVA with high VAc content. Un-stable structures induced further degradation in the main chain. Competition between radiation induced cross-linking and chain scission in EVA was observed, and the later was confirmed to be dominant. Higher VAc content resulted in remarkable drop in molecular weight and growth in polydispersity. Apparent re-arrangement in crystallisation and consequent decrease in thermal stability are discussed through differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA), which accorded well with the chain scission tendency. Interaction between photo-chemical degradation and physical annealing accounted for the first increasing then decreasing tendency in the mechanical properties of both EVAs.  相似文献   

14.
Novel composite self-disinfecting films of polylactic acid (PLA) filled with nanosized particles of double sodium–copper(II) paratungstate B Na2Cu3(CuOH)2[W12O40(OH)2]·32H2O (POM) were developed. The solvent casting (POM/PLA film) and solvent-free melt extrusion methods (Extr. POM/PLA film) were applied for film preparation. The copper (II) ion release to water from both types of the films after 10 days at different temperatures demonstrated that the PLA matrix acts as a diffusion barrier, and the resulting concentration of released copper in water at room temperature remained low, at 0.79% for POM/PLA film and 0.51% for Extr. POM/PLA film. The POM-containing films reveals a significant inhibitory effect against E. coli ATCC 25922 in the agar diffusion test. The numbers of CFUs in washes of the films after incubation for 24 h were found to be 3.6 log CFU mL–1 (POM/PLA film) and 4.1 log CFU mL–1 (Extr. POM/PLA film). The films combine the antibacterial properties of POM and a bio-based polymer matrix, which makes them a prospective coating material for applications in hospital indoor environments. Excellent thermal stability of POM gives a technological advantage for industrial manufacturing to allow the processing of novel composite material in the solvent free (molten) state.  相似文献   

15.
Poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) are biodegradable aliphatic polyesters, which being semicrystalline and thermoplastic can be processed by conventional methods. Their blends give interesting materials for industrial packaging applications, due to their increased ductility as PBAT content increases. However, like many aliphatic polyesters, the PLA matrix degrades upon melt processing thus affecting the thermo-mechanical features of the blended material. In this work, we studied the effect of processing at high temperature on the molecular weight distribution, morphology, and thermo-mechanical properties of both homopolymers, as well as the PLA/PBAT 75/25 blend. Notably, different processing conditions were adopted in terms of temperature (range 150-200 °C) and other relevant processing parameters (moisture removal and nitrogen atmosphere). Analysis of PLA/PBAT blends indicated that intermolecular chain reactions took place under strong degradative conditions of PLA, yielding PLA/PBAT mixed chains (copolymers). Increasing amounts of copolymers resulted in improved phase dispersion and increased ductility, as SEM and mechanical tests indicated. Conversely, reduced PLA degradation with less copolymer formation, afforded higher modulus materials, owing to poorer dispersion of the soft phase (PBAT) into the PLA matrix.  相似文献   

16.
Nucleation capacity of organically modified natural montmorillonite within the surface-treated banana fiber (BF)-reinforced PLA biocomposites has been studied using DSC analysis in the present investigation. Both the surface treatments and nanoclays play vital roles in the variation in nucleation process of PLA during cold crystallization process. Biocomposite made up of silane-treated BF and its bionanocomposite prepared using cloisite 30B (C30B) were showed superior nucleation parameters, n and K values, in the Avrami plots. Enhanced equilibrium melting point and lower E a suggests the reinforcing effect imparted by the BF surface treatments and C30B within the PLA matrix. Even though, Louritzen–Hoffmann theory was revealed that no change in crystallization regimes of PLA even after the biocomposite and bionanocomposite preparation. TG analysis revealed better heat barrier capacity for all the biocomposites and bionanocomposites in comparison with virgin PLA (V-PLA). Increased storage modulus values for biocomposites and bionanocomposites also confirm the reinforcing effects of the fillers. Heat deflection temperature and the flammability studies concluded better application window for newly developed materials than that V-PLA.  相似文献   

17.
This article reviews various methods of synthesizing polycondensation and ring-opening polymerization and modifying properties of polylactic acid (PLA), which may be used as biomaterials, such as a drug carrier in a drug delivery system, as a cell scaffold and suture in tissue engineering, and as packaging materials in packaging engineering field. Copolymerization of lactide with other monomers or polymers such as malic acid, polyethylene glycol (PEG), polyglycolic acid (PGA), or dextran, as well as blending polylactide with natural derivatives and other methods of modification are discussed. Surface modifications of PLA-type copolymers, such as surface coating, chemical modification, and plasma treatment are described.  相似文献   

18.
The blending of PLA with poly(butylene-adipate-co-terephthalate) (PBAT) is a promising strategy to achieve a toughened multiphase material. The blends ductility could be further improved through reactive compatibilization, i.e. inducing the formation of comb PLA-PBAT copolymers during the melt blending. In the present work a non-selective strategy was adopted which consisted in the use of a peroxide, 2,5-Dimethyl-2,5-di(tert-butylperoxy)hexane. The phase morphology development and the final properties (torque, fluidity in the melt, tensile behaviour, thermal and dynamical-mechanical features) of the blends were studied as a function of the peroxide concentration. The elongation at break was improved up to a maximum value thanks to this approach and a corresponding minimum was observed in the value of the dispersed phase diameter. A structural characterization of the macromolecules formed during the reactive process was attempted by using size exclusion chromatography of the blends and comparison with the pure polymers obtained by processing in the presence of the peroxide.  相似文献   

19.
Graphite (expanded graphite(EG), natural graphite (NG) and graphite oxide (GO)) flame retardant poly(ethylene-co-vinyl acetate) copolymer (EVA) composites (EVA/EG, EVA/NG and EVA/GO) have been prepared by melt compounding. The flammability, the combustion process, the quantity of the residual char, the morphology of the residual chars and the thermal stability of the chars were investigated by cone calorimeter, SEM and TGA. The results indicate that heat release rate (HRR), total heat released (THR) and total smoke release (TSR) of EVA/EG (EG 30 phr) composite decrease to about 21%, 42% and 28% of that of pure EVA, respectively. The orders of the three kinds of graphite on the reduction effect of THR and TSR are EG > NG > GO. The higher the quantity, the higher is the thermal stability of the char residue and the more compact and porous char structure may be the main reasons for the phenomenon above. It has been found that the flame retardance of EVA vulcanisates is improved and the fire jeopardizing is dramatically reduced due to the addition of the graphite, especially for EG, which can give some advice to design formulations for practical applications as the jackets of cables.  相似文献   

20.
Summary: The aims of the present work were to prepare and characterize nanocapsules containing antitumoral agent methotrexate (MTX) from poly(D ,L -lactide) (PLA) and poly(D ,L -lactide)-poly(ethylene glycol) diblock copolymer (PLA-PEG) with the purpose of administrating this drug by topical ocular route for primary ocular lymphoma treatment. Nanocapsules were prepared by the interfacial deposition of preformed polymer. The influences of the initial amount of MTX on the encapsulation efficiency, drug recovery and drug content, as well as the physicochemical properties of the particles were evaluated. The particle mean diameters were 246 and 146 nm, and zeta potential values were −38.8 and −33.6 mV, for the MTX-loaded nanocapsules prepared from PLA and PLA-PEG, respectively. The methotrexate content in the particles increased with the increasing in the drug amount added to the formulations, but the drug recovery decreased significantly. After 4 h of in vitro release, 28 and 86% of MTX was released from PLA and PLA-PEG nanocapsules, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号