首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article describes the test results of thermal properties and flammability of the unconventionally cross-linked blends of chlorosulfonated polyethylene (CSM) and butadiene–styrene rubber (SBR) by means of zinc oxide or nano-zinc oxide. The thermal curves have been interpreted from the point of view of the chemical transitions of elastomers and their blends. It has been found that the content of combined chlorine in CSM exerts a significant influence on the cross-linking kinetics of CSM/SBR blends, their thermal properties and flammability.  相似文献   

2.
The article presents the effect of attapulgite (ATT) and its synergic action with carbon or silica on the thermal properties and flammability of cross-linked styrene–butadiene rubber. It has been shown that ATT is active filler improving the thermal and mechanical properties of composites containing this aluminosilicate. The decreased flammability of vulcanizates containing ATT compared to that of unfilled vulcanizates results from good insulating properties of the ATT used. The considerable reduction in the flammability of composites containing ATT and carbon nanofiber or silica is connected, first of all, with the formation of a homogeneous boundary layer.  相似文献   

3.
The influence of crosslink type and crosslink density on the swelling and mechanical behavior of styrene–butadiene rubber (SBR) membranes were studied in four aliphatic hydrocarbons. To vary the crosslink type and crosslink density, SBR was vulcanized by four different vulcanizing systems viz conventional, efficient, peroxide and a mixture of sulfur and peroxide. SBR vulcanizates having mono or disulfidic crosslinks (efficient system) exhibited the highest solvent uptake whereas those with C–C bonds (peroxide system) showed the lowest. SBR crosslinked by the mixed system showed superior mechanical properties in the unswollen, swollen and deswollen conditions. Arrhenius and thermodynamic parameters were evaluated from the diffusion data. Finally, a comparison between theoretical and experimental diffusion results was carried out.  相似文献   

4.
Heterobimetallic oxalato complex precursors, manganese(II)tetraaquatris(oxalato)lanthanate(III)hexahydrate (MnOLa), cobalt(II)pentaaquatris(oxalato)lanthanate(III)trihydrate (CoOLa), nickel(II)pentaaquatris(oxalato)lanthanate(III)hexahydrate (NiOLa) and copper(II)diaaquatris(oxalato)lanthanate(III)monohydrate (CuOLa) of the type, M3[La(C2O4)3(H2O) m ]2·nH2O have been synthesized in aqueous medium. The precursors were characterized by elemental analysis, IR, electronic spectral and powder X-ray diffraction studies. The good crystalline nature with monoclinic structures predominates in MnOLa and NiOLa whereas triclinic structures were found in CoOLa and CuOLa. The solid-state thermal behaviour of the precursors was explored using TG, DTG and DTA in air. The MnOLa generated a mixture species consisting mainly of MnO2, Mn3O4, Mn5O8, La2O3 and LaMn7O12 at 1000 °C through the formation of several intermediate species at 380 and 570 °C. The studies revealed that CoOLa led mainly to LaCoO3 and La2CoO4 along with some oxides of both the cobalt and lanthanum at 1000 °C. In case of nickel analogue the mixture species identified at 1000 °C are mainly of La2NiO4, La2O3, Ni2O3 and NiO2. In case of CuOLa the product at 1000 °C consisted of La2CuO4, La2Cu2O5 and oxides of copper and lanthanum. The nature of decomposition of the precursors in nitrogen were seen from DSC study and the kinetic parameters i.e., E * , lnk 0, ΔH # , ΔS # and order of reaction of all the steps were evaluated and discussed.  相似文献   

5.
Effects of several heterocyclic compounds containing nitrogen, trisubstituted amines and diamines and molecules based on N,N,N′,N′,N′′,N′′-substituted-[1,3,5]triazine-2,4,6-triamine in preventing thermooxidative degradation of styrene–butadiene rubber (SBR) have been studied using non-isothermal DSC measurements. The aim of this study was to determine and compare the stabilizing effect of individual compounds and to select the structures with the best antioxidative properties. In order to compare the stabilizing effect of the compounds, induction periods and protection factors have been calculated. The treatment of the experimental data was carried out using a method based on a non-Arrhenian temperature function. The results show that better antioxidative properties can be assigned to heterocyclic compounds. On the other hand, molecules containing triazine structures exhibited only negligible stabilizing effect on SBR at lower temperatures and even destabilizing effect at higher temperatures.  相似文献   

6.
The effect of SKN-30KTRA low molecular weight rubber on the elastic and strength properties of adhesive compositions made with epoxy-rubber composition, is shown. The data on the effect of rubber on curing of adhesive compositions are presented.  相似文献   

7.
A novel charring agent poly(p-propane terephthalamide) (PPTA) was synthesized by using terephthaloyl chloride and 1,3-propanediamine through solution polycondensation and it was used together with ammonium polyphosphate (APP) to prepare a novel intumescent flame retardant (IFR) for ABS. The thermal degradation behaviour and flame retardancy were investigated, the results showed that PPTA could be effective as a charring agent, the flame retardancy of ABS and the mass of residues improved greatly with the addition of IFR. When the content of APP was 22.5 mass% and PPTA was 7.5 mass%, the limiting oxygen index (LOI) value of IFR-ABS system was found to be 32.4, and class V-0 of UL-94 test was passed. Moreover, the synergistic effects of two different adjuvants AlPi and MnO2 in IFR-ABS system have been studied.  相似文献   

8.
9.
The rheological properties of styrene–butadiene rubber (SBR) loaded with dual phase filler were measured using Monsanto Processability Tester (MPT) at three different temperatures (100°C, 110°C and 130°C) and four different shear rates (61.3, 306.3, 613, and 1004.5 s−1). The effect of electron beam modification of dual phase filler in absence and presence of trimethylol propane triacrylate (TMPTA) or triethoxysilylpropyltetrasulphide (Si-69) on melt flow properties of SBR was also studied. The viscosity of all the systems decreases with shear rate indicating their pseudoplastic or shear thinning nature. The higher shear viscosity for the SBR loaded with the electron beam modified filler is explained in terms of variation in structure of the filler upon electron beam irradiation. Die swell of the modified filler loaded SBR is slightly higher than that of the unmodified filler loaded rubber, which is explained by calculating normal stress difference for the systems. Activation energy of the modified filler loaded SBR systems is also slightly higher than that of the control filler loaded SBR system.  相似文献   

10.
Silica particles were generated and grown in situ by sol–gel method into rubber blends comprised of natural rubber (NR) and acrylonitrile butadiene rubber (NBR) at various blend ratios. Silica formed into rubber matrix was amorphous in nature. Amount of in situ silica increased with increase in natural rubber proportion in the blends during the sol–gel process. Morphology studies showed that the generated in situ silica were nanoparticles of different shapes and sizes mostly grown into the NR phase of the blends. In situ silica filled NR/NBR blend composites showed improvement in the mechanical and dynamic mechanical behaviors in comparison to those of the unfilled and externally filled NR/NBR blend composites. For the NR/NBR blend at 40/60 composition, in particular, the improvement was appreciable where size and dispersion of the silica particles into the rubber matrix were found to be more uniform. Dynamic mechanical analysis revealed a strong rubber–in situ silica interaction as indicated by a positive shift of the glass transition temperature of both the rubber phases in the blends.  相似文献   

11.
The linear viscoelastic behavior in dynamic shear and tensile creep at temperatures from −30 to 70 °C is measured for an styrene–butadiene rubber (SBR) elastomer cured with dicumyl peroxide to crosslinking densities between 0 and 23.5 × 10−5 mol/cm3. The G′, G″, and tan δ isotherms are analyzed by time–temperature superposition (TTS), where the tan δ master curves are consistent with those of Mancke and Ferry. However, to achieve the TTS in the lightly crosslinked SBR systems, an anomalous vertical shift is required in the narrow temperature region from 10 to 30 °C. The vertical shift factor in this temperature region is not the standard from rubber elasticity. No anomalous behavior is detected in the equilibrium modulus, which is a linear function of temperature in accordance with the classical theory of rubber elasticity. In contrast to SBR, standard vertical shifts are required to effect TTS for uncrosslinked polybutadiene and an ethylene propylene diene monomer elastomer. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

12.
13.
The morphology, thermal degradation behavior in addition to static and dynamic mechanical properties of various ethylene?Cpropylene?Cdiene (EPDM) rubber compounds containing nano-zinc oxide (NZnO) were investigated compared to those of EPDM with ordinary-sized ZnO (OSZnO). The field-emission scanning electron microscopy studies showed that unlike the conventional system, the formation of large size ZnO agglomerates was discouraged for NZnO filled systems. Thermogravimetric analysis (TG) revealed that the thermal degradation of EPDM system was delayed upon the inclusion of NZnO instead of OSZnO in the compound. The kinetic analysis of TG data based on Friedman and Kissinger methods showed that the nanocomposite samples exhibited higher activation energy (E a ) and lower order of reaction (n) over the conventional system, suggesting the enhancement of thermal stability upon decreasing ZnO particle size. The results obtained from dynamic mechanical analysis and static mechanical characterizations in terms of hardness, resilience, and abrasion tests interestingly indicated that NZnO not merely could act as a thermal insulator, but also could perform as a nano-filler to improve the final performance of EPDM elastomers.  相似文献   

14.
15.
Li  Xin  Liang  Dong  Li  Kai  Ma  Xuemei  Cui  Jianlan  Hu  Zhiyong 《Journal of Thermal Analysis and Calorimetry》2021,145(5):2343-2352
Journal of Thermal Analysis and Calorimetry - A hypophosphorous acid-based ionic liquid [Bmim]H2PO2 (BMP) was synthesized and characterized by FTIR, 1HNMR, 13CNMR and 31PNMR. Moreover, a new...  相似文献   

16.
17.
Copper matrix with an individual addition of TiC particles was prepared by means of powder metallurgy and hot pressing process, and the effect of TiC addition on microstructure, thermal properties, and electrical conductivity of Cu–TiC composites was investigated. The TiC quantity was changed as 1, 3, 5, 10, and 15 Cu (in mass%), and Cu–TiC powder mixtures were hot-pressed for 4 min at 700 °C under an applied pressure of 50 MPa. Microstructure studies revealed that TiC particles were distributed uniformly in the Cu matrix. Thermal Analysis result showed that there were two exothermic peaks and with rising TiC rate, oxidation amount of Cu composite decreased. With the increasing addition of TiC, hardness of composites changed between 58.6 HV0.1 and 87.8 HV0.1. The highest electrical conductivity for Cu–TiC composites was obtained in the Cu-1 mass% TiC composite, with approximately 81.2 % IACS.  相似文献   

18.
This article presents the test results of thermal properties and flammability of crosslinked nitrile rubber in the presence of zinc oxide or nano-zinc oxide containing waste keratin, using the test results obtained by means of a derivatograph, DSC, and oxygen index. The influence of modified montmorillonite (NanoBent) on selected properties of investigated elastomer–protein composites has also been studied. The composites' thermal stability and flammability depend on the method of composite preparation and the quantity of added keratin. The addition of waste keratin reduces the flammability of NBR–keratin composites.  相似文献   

19.
The present work was aimed at preparing composite materials using epoxy matrix and murta fibers of varying lengths and weight percentages. The composites were analyzed on the basis of density, thermal gravimetric analysis, infrared spectroscopy, scanning electron microscopy, tensile strength, flexural strength, Izod impact strength, and Rockwell hardness studies. Twenty-five weight percent of randomly oriented fibers of 25 mm length rendered the best mechanical properties to the composite. The tensile strength of the composite was analyzed using the Hirsch model. The characterization of the composite reveals that murta fiber is a good candidate for polymer reinforcement.  相似文献   

20.
The article describes the measurements results of the influence of waste keratin on the properties of cross-linked styrene-butadiene rubber especially taking its thermal properties and flammability into consideration. The biopolymer used was thoroughly examined by means of derivatography, elementary analysis, FTIR spectroscopy, Zetasizer nano S90, and Zetasizer 2000. It has been found that the presence of protein facilitates the cross-linking of the elastomer investigated and the elastomeric-protein materials are characterized by good thermal and mechanical properties as well as a considerably increased resistance to thermooxidative aging. Under the influence of keratin, the flammability of the composites obtained is decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号