首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Improving optical properties is an important topic in the field of polymer science. In this research, a novel, metal-free, and inexpensive vitamin C sulfonamide adduct has been developed to enhance the optical behaviors of polyvinyl alcohol (PVA). Initially, the vitamin C adduct has been fabricated through atom economic reaction and then characterized using several spectroscopic techniques, including 1H NMR, 13C NMR, DEPT-135, Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). Accordingly, a dramatic chemical alteration in ascorbic acid structure has been confirmed and led to enhancing chemical interactions with the host polymer. The ascorbic acid adduct has been doped into PVA to prepare a flexible film of polymer composites with potential optical behaviors. The identity of composite film has specified from FTIR, XRD, and UV–vis spectroscopy. The XRD pattern of the hybrid polymer has revealed a remarkable boost in its amorphous structure compared to the PVA host. The FTIR data of both matrix PVA and its composites reveal the potent chemical interactions of functional groups within the hybrid PVA. The main optical information of synthesized hybrid film was obtained from the UV–vis spectra. The refractive index (n) and dielectric loss (εi) values are elevated notably, whereas the optical band gap energy (Eg) declined from 6.3 to 3.6 eV. The direct electronic transition between the valence band (VB) and conduction band (CB) was determined by implementing Tauc’s model. These preliminary results suggest that the fabricated flexible composite will have an excellent opportunity to use in the manufacturing optical devices.  相似文献   

2.
Thin films of pure and 10 wt% BaCl2 doped poly(vinyl alcohol) (PVA) were prepared by solution casting method. These films were subjected to electron irradiation for different doses ranging from 0 to 400 kGy in air at room temperature. The effect of electron irradiation on the optical and free volume related microstructures of these polymer films was studied using positron annihilation lifetime spectroscopy, FTIR and UV-vis techniques. The FTIR spectral studies indicate that the electron irradiation induces chemical modifications within the doped PVA, which results in chain scission as well as cross-linking of the polymer. The positron lifetime study on these irradiated polymers shows that the chain scissions and cross-linking within the polymer matrix affect the free volume content and hence the microstructure. The UV-vis optical absorption studies show that the induced microstructural change by electron irradiation also modifies the optical properties. Using UV-vis spectra, the optical energy band gap was estimated and it decreases with increase in electron dose. A correlation between positron results and optical results is obtained and electron irradiation induced microstructure modifications within the doped polymer are understood. The results highlight the usefulness of positron annihilation technique in the study of the microstructure of irradiated polymers.  相似文献   

3.
The effect of polypyrrole (PPy) on the polyvinyl alcohol (PVA)-potassium iodide (KI)-iodine (I2) polymer electrolytes has been investigated and optimized to use in a dye-sensitized solar cell (DSSC). The different weight ratios of PVA: PPy (93: 2, 91: 4, 89: 6, 87: 8, and 85: 10 wt%) polymer electrolytes (PE) were prepared by solution casting. Structural, complex formation and surface roughness of the prepared electrolytes was confirmed by X-ray diffraction, FTIR, and atomic force microscopy (AFM) respectively. Conductivity plots of all polymer films showed increasing trend with temperature and concentration of PPy. The activation energy of the optimized system found to be 0.871 kJ mol?1. UV-visible spectrum was adopted to characterize the absorption spectra of the material revealed that increase in the absorbance with increasing PPy content and shifting the absorbance maximum towards lower energy. The indirect band gap decreased from 3.78 to 2.14 eV and direct band gap decreased from 3.88 to 2.71 eV. The EIS analyses revealed the lower charge transfer resistance of 3.029 Ω cm2 at the interface between CE and PE. The excellent performance was observed in the fabricated DSSCs using PVA (85%)/PPy (10%)/KI (5%)/I2 polymer electrolyte with a short-circuit current density of 11.071 mA cm?2, open-circuit voltage of 0.644 V, fill factor of 0.575, and photovoltaic conversion efficiency of 4.09% under the light intensity of 100 mW cm?2. Hence, the PPy content in polymer electrolyte influences the remarkable performance of low-cost DSSC.  相似文献   

4.
In this work, the green method was used to synthesize Sn2+-metal complex by polyphenols (PPHs) of black tea (BT). The formation of Sn2+-PPHs metal complex was confirmed through UV-Vis and FTIR methods. The FTIR method shows that BT contains NH and OH functional groups, conjugated double bonds, and PPHs which are important to create the Sn2+-metal complexes. The synthesized Sn2+-PPHs metal complex was used successfully to decrease the optical energy band gap of PVA polymer. XRD method showed that the amorphous phase increased with increasing the metal complexes. The FTIR and XRD analysis show the complex formation between Sn2+-PPHs metal complex and PVA polymer. The enhancement in the optical properties of PVA was evidenced via UV-visible spectroscopy method. When Sn2+-PPHs metal complex was loaded to PVA, the refractive index and dielectric constant were improved. In addition, the absorption edge was also decreased to lower photon. The optical energy band gap decreases from 6.4 to 1.8 eV for PVAloaded with 30% (v/v) Sn2+-PPHs metal complex. The variations of dielectric constant versus wavelength of photon are examined to measure localized charge density (N/m*) and high frequency dielectric constant. By increasing Sn2+-PPHs metal complex, the N/m* are improved from 3.65 × 1055 to 13.38 × 1055 m−3 Kg−1. The oscillator dispersion energy (Ed) and average oscillator energy (Eo) are measured. The electronic transition natures in composite films are determined based on the Tauc’s method, whereas close examinations of the dielectric loss parameter are also held to measure the energy band gap.  相似文献   

5.
张晓松  丁国华  齐巧珍 《应用化学》2010,27(11):1334-1338
合成了3,5-二氯水杨醛缩邻苯二胺铜配合物[Cu(C20H10Cl4O2N2)]·DMF。 通过元素分析、红外光谱、热重测试技术对其进行了表征,同时用X射线单晶衍射确定了其晶体结构;利用紫外-可见光吸收光谱、荧光激发和发射光谱研究了该配合物的光物理性能。 结果表明,该晶体属于单斜晶系,空间群为P2(1)/n,a=0.81316(8) nm,b=1.53101(18) nm,c=1.87819(19) nm,β=92.4530(10)°,Z=4,最终偏差因子R1=0.0584,ωR2=0.1482,配合物的中心铜离子与席夫碱的2个O和2个N配位,形成1个五元环和2个六元环,从而构成了1个四配位的平面构型;配合物的热分解温度为384 ℃,具有很好的热稳定性;在DMF溶液体系中,配合物的荧光激发带位于360~480 nm,荧光发射峰在507 nm处,为蓝绿色荧光,最佳激发波长为440 nm,禁带宽度2.59 eV。  相似文献   

6.
Azo dye doped polymer films were prepared on glass substrates using spin-coating technique. FTIR, UV-Vis spectra and PL measurements were recorded to characterize the structure of the metanil yellow doped PVA films. Surface morphology and thickness of the films were studied using AFM and FESEM. The magnitude of both real and imaginary parts of third-order nonlinear susceptibility χ3 of metanil yellow were determined by the Z-scan technique. The nonlinear refractive index n2 and the nonlinear absorption coefficient β of the azo dye doped polymer films were calculated respectively. The real part of the third-order susceptibility χ3 is much larger than its imaginary part indicating that the third-order optical response of the metanil yellow doped PVA films is dominated by the optical nonlinear refractive behavior.  相似文献   

7.
Effect of electron irradiation on the free volume related microstructural and optical properties of chalcone doped Poly(vinyl alcohol) composite films have been studied using FTIR, UV-Visible, XRD and Positron Annihilation techniques. The FTIR spectral study shows that the irradiation induces the crosslinking within the composite. Using UV-Visible absorption spectra the optical energy band gap and activation energies were estimated and the variation of these parameters suggests the existence of defects and molecular ordering within the irradiated composite. XRD diffractograms reveal that the crosslinking enhances the crystallinity of the sample. In this cross-linked polymer composite the fluorescence enhancement has been observed in the fluorescence spectral study. The Positron annihilation result suggests that the irradiation affects the free volume properties and crosslinking hinders the chalcone chromophore molecular rotation. Under this restricted condition the chromophore molecules likely to emit enhanced fluorescence and its mobility is directly related to the free volume around it.  相似文献   

8.
A red‐emitting heteroleptic cyclometalated platinum(II) complex containing an ancillary ligand of pyrazol‐based diketone derivative was synthesized. Its optophysical and electroluminescent properties were studied. Compared to the reported (piq)Pt(acac) complex, this platinum(II) complex exhibited a blue‐shifted UV absorption band at 300–450 nm, a low LUMO energy level and improved electroluminescent property. Using this platinum(II) complex as a single doping emitter and a blend of ploy(9,9‐dioctylfluorene) and 2‐tert‐butylphenyl‐5‐phenyl‐1,3,4‐oxadiazole as a host matrix, the fabricated polymer light‐emitting devices displayed saturated red emission with a peak at 648 nm and a shoulder at 601 nm. Furthermore, the emission quenching of the platinum(II) complex was significantly suppressed in these devices at high current density due to an introduction of the non‐planar pyrazol group into the ancillary ligand.  相似文献   

9.
《印度化学会志》2022,99(12):100756
In this paper, we report the successful fabrication of a novel dye-sensitized solar cell (DSSCs) using Mg doped ZnO as photoanode and natural dye Terminalia catappa as sensitizer. We synthesized Mg doped ZnO nanoparticles at different Mg concentrations (2%, 4%, 6%, and 8%) by employing a simple solvothermal route. The structural, morphology, composition and optical investigations of synthesized Mg doped ZnO nanoparticles are carried out using XRD, FE-SEM, EDAX, TEM, SAED, FTIR and UV–visible measurements. The XRD results confirmed the formation of hexagonal-wurtzite structure for the Mg doped ZnO nanoparticles and increase of crystalline size with increasing dopant concentration up to 6% is observed. FESEM analysis indicated a gradual change in the surface morphology with increasing Mg concentration and the size of the nanoparticles are slightly reduced at higher Mg concentration. The HRTEM images and SAED pattern also confirmed the formation of wurtzite hexagonal phase of ZnO. The band gap energies calculated from the UV–visible spectra using Tauc's plots indicated decrease of band gap energy with dopant concentration. The DSSCs fabricated using Mg doped ZnO photo-anodes and Terminalia catappa sensitizer showed higher efficiency at higher Mg concentration and observed increase in efficiency is discussed based on slower charge carrier recombination and higher carrier life time as evidenced from the electrochemical impedance analysis.  相似文献   

10.
Copper doped sodium leadbismuthate glasses were prepared in the chemical composition (wt.%) 35Bi2O3+35PbO+(30-x)Na2O+xCuO (where x=1, 2, 3 and 4). The optical spectra of the glasses have been investigated. The optical absorption spectra of Cu2+ doped glasses show a broad absorption band between 560 and 880 nm, which is attributed to the 2Eg-->2T2g transition of Cu2+ ion. FTIR spectral studies confirm the Bi-O bonds and the presence of [BiO3] pyramidal units.  相似文献   

11.
Decomposition of hydrogen peroxide was examined was examined by using Cu(II)–poly(vinyl alcohol) (PVA) as catalyst. The rates of decomposition were measured. Electronic spectra and infrared spectra of Cu(II)–PVA complex systems were determined at various stages of decomposition. Effect of addition of various amines to the Cu(II)–PVA system on catalytic action was considered. The relation between the initial rate and the initial concentration of hydrogen peroxide varied in accordance with the rate expression of Michaelis-Menten type. Cu(II)–PVA complex was found to have a large catalytic activity, while the polymeric PVA ligand and copper(II) ion exhibited less activity than Cu(II)–PVA complex. For hydrogen peroxide decomposition, Cu(II)–PVA complex showed catalytic activity when a stable complex of planar structure formed, while many other polymer complexes reported by other authors showed the catalytic activity when they were in unstable complex forms. An amine substituent has a critical influence on the rate of hydrogen peroxide decomposition. The mechanism in the first step of reaction for hydrogen peroxide decomposition is discussed.  相似文献   

12.
The current study presents the development of a simple and direct spectrophotometric approach for Hg(II) ions determination. This method has the significant advantage of being a simple procedure where no further solvent purification or pre-concentration is needed. The concentration of Hg(II) ions was determined in the presence of the Schiff base ligand named 2-((5-(2-hydroxy-3-methoxybenzylideneamino)–2H-1,2,4-triazole-3-ylimino)methyl)-6-methoxyphenol (HMBT), at pH 10 using Briton Robinson Buffer. The method Obey Beer's law in concentration range 0.1–6 µg mL- 1 of Hg with (LOD) 0 0.016 µg L -1 and (LOQ) 0.051 µg/L. The molar ratio ensured the formation of a metal complex between HMBT and Hg ions was in the molar ratio 2:1 (HMBT: Hg2+). The method was used for the determination of mercury ions in tap water and Zamzam water samples. The applied method has many advantages, such as simplicity, low cost, ease of operation, rapid detection, low-ligand consumption, and high sensitivity. The analytical method sensitivity was confirmed via the suitable selection of experimental circumstances. More information about the structure and stoichiometry of the complex formed in solution between Hg(II) and HMBT ligand has been gained through the isolation and investigation of solid complex (HMBT-Hg). The structure of the solid complex, HMBT-Hg, has been elucidated by applying analytical routes such as elemental analysis and the spectral mass, UV–vis spectra, and thermal analysis.  相似文献   

13.
In the present work, Zinc Oxide (ZnO) nanoparticles (NPs) were synthesized by the chemical co-precipitation method using Zinc Chloride as the initial chemical, while Nickel and Cobalt chloride as dopants. Phase identification of metal (Ni, Co) doped Zinc Oxide nanoparticles (NPs) was observed using x-ray diffraction (XRD). The small lattice distortion or phase changes appeared due to shifting of diffraction angles peaks towards larger angle in ZnO are corresponded to metal (Ni, Co) dopant. The average crystallite size appears to decrement in NP size from 7.67 nm to 6.52 nm and 5.35 nm to 5.17 nm with increasing 5 % to 80 % of metal (Ni, Co) dopant respectively. The optical characteristics, including the absorption spectra of the prepared sample were observed through UV–Vis spectroscopy, Meanwhile SEM confirmed the observation of composition change in specimen with metal (Ni, Co) dopant concentration. The bandgap value was also found decrement 5.23 eV to 5.05 eV with increment of metal (Ni, Co) dopant concentration. The functional groups were measured by Fourier transformation infrared spectroscopy (FTIR). FTIR peaks found the metal (Ni, Co) doped ZnO with the vibration mode of (Zn2+ –O2?) ions due to the increment of dopant concentrations. Furthermore, electrical results show the ohmic behavior of prepared samples. These findings indicate the possibility of tuning optical, structural and electrical properties of metal (Ni, Co) doped ZnO with various dopant concentrations of Nickel and will have great potential to find application in optoelectronic devices.  相似文献   

14.
A poly (vinyl alcohol) PVA/Eriochrome Black-T (EBT) dye, and PVA/Eosin-Y (EY) dye composite film was prepared using a solution casting process. The dye-doped composite polymer films were characterized by UV–vis spectroscopy. An optical band gap (Eg) of pure PVA reduced from 4.22?eV to 2.80?eV for PVA/EBT film and 2.14?eV for PVA/EY film respectively. This result indicates the occurrence of inter-molecular hydrogen bonding between the –OH functional group in PVA chains and sulfonate (EBT) and carboxyl group (EY) in dye molecules, respectively. Moreover, the experimental result of PVA/EBT and PVA/EY composite film showed the excellent properties of a large scale cut-off filter in the ultraviolet and visible range region.  相似文献   

15.
The alignment and optical properties of ferroelectric liquid crystal cells, having alignment films of a chalcone-based side chain polymer treated by linearly polarized UV irradiation were investigated. The long absorption band of the UV/Vis spectra gradually decreased and the FTIR spectra shifted as the irradiation times increased, indicating that cyclo-addition and isomerization reactions of the chalcone-based side chains occurred. UV dichroism demonstrated anisotropic changes in the alignment films, with a maximum at low exposure energy (0.5 J cm-2). Liquid crystal molecules were aligned perpendicular to the polarization direction of the linearly polarized UV radiation. The azimuthal anchoring energy of liquid crystal E7 on a chalcone-based side chain polymer surface increased with exposure energy. Well aligned defect-free cells and high contrast ratio were achieved with irradiation of longer than 5 min; the geometric conditions for a stable C2 structure may be satisfied at low temperature with slowly cooling.  相似文献   

16.
Photocatalytic degradation of glyphosate contaminated in water was investigated. The N‐doped SnO2/TiO2 films were prepared via sol–gel method, and coated on glass fibers by dipping method. The effects of nitrogen doping on coating morphology, physical properties and glyphosate degradation rates were experimentally determined. Main variable was the concentration of nitrogen doping in range 0–40 mol%. Nitrogen doping results in shifting the absorption wavelengths and narrowing the band gap energy those lead to enhancement of photocatalytic performance. The near optimal 20N/SnO2/TiO2 composite thin film exhibited about two‐ and four‐folds of glyphosate degradation rates compared to the undoped SnO2/TiO2 and TiO2 films when photocatalytic treatment were performed under UV and solar irradiations, respectively, due to its narrowest band gap energy (optical absorption wavelength shifting to visible light region) and smallest crystallite size influenced by N‐doping.  相似文献   

17.
The complexes of cerium with nitrogen, oxygen and sulfur donor ligands were prepared by conventional method. These newly synthesized complexes were characterized by FTIR, UV–Vis, DART Mass, TGA, PXRD, SEM and TEM techniques. The magnetic studies were carried out by the vibrating sample magnetometer. The optical constants were measured by absorption and reflection spectra as a function of wavelength. The concentration dependence of refractive index and absorption was observed by the experimental method, which reveals that these parameters are affected by change in concentration. The optical band gap obtained from Tauc-plot indicates its probability to be a good semiconductor. The luminescence behavior of these cerium complexes was observed by the absorption and emission spectra and the emission life time was calculated by their life time spectra.  相似文献   

18.
A novel cadmium (II) nano-complex, [Cd(EtOH)(HL)(NO3)]2 (1), (H2L = 2-[(2-hydroxy-propylimino) methyl] phenol) was synthesized by solvothermal and sonochemical methods. The new nanostructure was characterized by scanning electron microscopy (SEM), X-ray powder diffraction, Fourier transform infrared spectroscopy and UV–Vis spectroscopy. Single crystalline of compound 1 was obtained using a branch tube method. The determination of the structure by single-crystal X-ray crystallography shows that the complex is a centrosymmetric dimer in which deprotonated phenolates bridge the two seven-coordinate metal atoms and link the two halves of the dimer. The luminescent properties of the complex 1 were examined and compared with the free ligand. The thermal stability of nano-complex 1 was analyzed by thermal gravimetric analysis. Furthermore, the effect of the initial substrates concentration on size and morphology of compound 1 nanostructure was investigated in sonochemical method. After the solid-state transformation of compound 1 at 650 °C in air, pure-phase nano-sized cadmium (II) oxide was produced. The morphology and size of the prepared CdO samples were further observed using TEM and SEM. Investigation of the optical properties of the produced cadmium oxide, using UV–Vis spectroscopy, confirmed its semiconducting properties by revealing optical band gap at 2.93 eV. A blue shift is observed in the band gap when compared with bulk sample which is due to the quantum size effect.  相似文献   

19.
A new chromone derivative (6-ethoxy chromone-3-carbaldehyde benzoyl hydrazone) ligand (L) and its two transition metal complexes [Zn(II) complex and Ni(II) complex] have been prepared and characterized on the basis of elemental analysis, molar conductivity, mass spectra, UV–vis spectra and IR spectra. The Zn(II) complex exhibits light blue fluorescence under UV light, and the fluorescent properties of Zn(II) complex and the ligand in solid state and in different solutions (MeOH, DMF, THF and H2O) were investigated. In addition, the interactions of the Zn(II) complex and the ligand with calf thymus DNA were investigated using UV–vis absorption, fluorescence, circular dichroic spectral methods and viscosity measurement. It was founded that both two compounds, especially the Zn(II) complex, strongly bind with calf thymus DNA, presumably via an intercalation mechanism.  相似文献   

20.
Yongsheng Liu 《Tetrahedron》2009,65(27):5209-2487
A series of acceptor-donor-acceptor molecules (DCN3T, DCN5T and DCN7T) based on oligothiophenes with low band gap are synthesized. The UV-vis absorption spectra of solution show that the introduction of electron-accepting groups results in a shift of the absorption onset towards longer wavelengths. Moreover, the optical spectra of their films show a large bathochromic shift and broadening of the bands with respect to the spectra in solution. The optical band gaps of film of these A-D-A molecules are 1.90, 1.74 and 1.68 eV, respectively. Cyclic voltammetry shows that all these compounds present a reversible first oxidation process whose potential decreases with the lengthening of oligothiophene cores. Electrochemical band gaps are 2.14, 1.88 and 1.71 eV, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号