首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microcalorimetric techniques had been used to study the influence of different physicochemical parameters on microbial growth in different permafrosts on the Tibetan plateau. The total heat evolution of the permafrost samples amended with glucose, Q T , the values of microbial growth rate constant, k, and the heat output power, P t , were calculated from the power–time (Pt) curves. It is observed that the same coverage vegetation show similar Pt curves, which strongly suggest that the permafrost microorganisms of the homology vegetation coverage have similar structures of community. Furthermore, the vegetation degradation turns out to have significant influence, that is, the better the status of vegetation is, the higher the values of k, CFU and Q T are.  相似文献   

2.
Based on the data from the pitting, geoelectrical prospectings, temperature measuring, and the divided layers frost-heaving instruments, this paper, first, discusses the structure features of active layers in this region, and proves the presence of the bowlshaped frost table in the stone circles area. Second, it analyses the temperature distributive rule in the active layer, meantime, according to the vertical-profile parameters of granularity, clay mineral, salt content and resistivities, it also discusses the different features of permafrost structure and their control actions on the periglacial landform development between high and low places. It suggests that the four-layer structure should exist in the permafrost region (including under-bedrock), that is, active layer, frost sand and gravels layer, frost volcanic rock permeated by sea water, and frost volcanic rock unpermeated by sea water. Finally, the permafrost table and its vertical gradient are deduced.  相似文献   

3.
4.
天然气水合物研究进展   总被引:3,自引:0,他引:3  
姚宇澄  殷福珊 《化学进展》1997,9(3):319-326
本文介绍了天然气水合物研究的历史和现状, 天然气水合物的结构, 它在冻土地带和海洋底部地表层的形成过程, 它对石油天然气工业的影响以及抑制生成天然气水合物的方法。介绍了天然气水合物作为潜在能源的巨大优势以及它对地球气候变化--温室效应的潜在危险性。  相似文献   

5.
Journal of Radioanalytical and Nuclear Chemistry - This study investigated the influence of precipitation and temperature on the runoff and forest growth in the northern Greater Khingan Mountains...  相似文献   

6.
Gas hydrates now are expected to be one of the most important future unconventional energy resources. In this paper, researches on gas hydrate exploitation in laboratory and field were reviewed and discussed from the aspects of energy efficiency. Different exploiting methods and different types of hydrate reservoir were selected to study their effects on energy efficiencies. Both laboratory studies and field tests have shown that the improved technologies can help to increase efficiency for gas hydrate exploitation. And it also showed the trend that gas hydrate exploitation started to change from permafrost to marine. Energy efficiency ratio(EER) and energy return on energy invested(EROI) were introduced as an indicator of efficiency for natural gas hydrate exploitation. An energy-efficient hydrate production process, called "Hydrate Chain Energy System(HCES)", including treatment of flue gas, replacement of CH4 with CO2, separation of CO2 from CH4, and storage and transportation of CH4 in hydrate form, was proposed for future natural gas hydrate exploitation.In the meanwhile, some problems, such as mechanism of CO2 replacement, mechanism of CO2 separation,CH4 storage and transportation are also needed to be solved for increasing the energy efficiency of gas hydrate exploitation.  相似文献   

7.
Natural gas hydrate occurrences contain predominantly methane; however, there are increasing reports of complex mixed gas hydrates and coexisting hydrate phases. Changes in the feed gas composition due to the preferred incorporation of certain components into the hydrate phase and an inadequate gas supply is often assumed to be the cause of coexisting hydrate phases. This could also be the case for the gas hydrate system in Qilian Mountain permafrost (QMP), which is mainly controlled by pores and fractures with complex gas compositions. This study is dedicated to the experimental investigations on the formation process of mixed gas hydrates based on the reservoir conditions in QMP. Hydrates were synthesized from water and a gas mixture under different gas supply conditions to study the effects on the hydrate formation process. In situ Raman spectroscopic measurements and microscopic observations were applied to record changes in both gas and hydrate phase over the whole formation process. The results demonstrated the effects of gas flow on the composition of the resulting hydrate phase, indicating a competitive enclathration of guest molecules into the hydrate lattice depending on their properties. Another observation was that despite significant changes in the gas composition, no coexisting hydrate phases were formed.  相似文献   

8.
The impact of fire on the nitrogen (N) cycle of natural ecosystems is arguable. Here we report and interpret an observation from boreal ecosystems in the Lena River basin, Sakha Republic (Yakutia), Russian Federation. Different types of permafrost soil (0-30 cm depth) were sampled along transects (60-150 m length) from the forest edge towards the centre of four separate thermokarst depressions under grassland. The average values of δ(15)N were remarkably similar within three transects, but differed systematically between them. Three findings point towards fire being the cause of the observed pattern. First, the spatial extent of systematic differences in soil δ(15)N coincides with the extent of typical fire scars in the region. Second, soil enrichment in (15)N is larger in the proximity of settlements, where fire is generally more frequent than in more remote places. Third, there is a significant positive correlation between δ(15)N values and the ratio of black C to total N. These findings point towards fire having a marked impact on soil δ(15)N and, accordingly, on the N cycle of this cold and dry ecosystem.  相似文献   

9.
Towards a fundamental understanding of natural gas hydrates   总被引:2,自引:0,他引:2  
Gas clathrate hydrates were first identified in 1810 by Sir Humphrey Davy. However, it is believed that other scientists, including Priestley, may have observed their existence before this date. They are solid crystalline inclusion compounds consisting of polyhedral water cavities which enclathrate small gas molecules. Natural gas hydrates are important industrially because the occurrence of these solids in subsea gas pipelines presents high economic loss and ecological risks, as well as potential safety hazards to exploration and transmission personnel. On the other hand, they also have technological importance in separation processes, fuel transportation and storage. They are also a potential fuel resource because natural deposits of predominantly methane hydrate are found in permafrost and continental margins. To progress with understanding and tackling some of the technological challenges relating to natural gas hydrate formation, inhibition and decomposition one needs to develop a fundamental understanding of the molecular mechanisms involved in these processes. This fundamental understanding is also important to the broader field of inclusion chemistry. The present article focuses on the application of a range of physico-chemical techniques and approaches for gaining a fundamental understanding of natural gas hydrate formation, decomposition and inhibition. This article is complementary to other reviews in this field, which have focused more on the applied, engineering and technological aspects of clathrate hydrates.  相似文献   

10.
Gas hydrates are crystalline structures comprising a guest molecule surrounded by a water cage, and are particularly relevant due to their natural occurrence in the deep sea and in permafrost areas. Low molecular weight molecules such as methane and carbon dioxide can be sequestered into that cage at suitable temperatures and pressures, facilitating the transition to the solid phase. While the composition and structure of gas hydrates appear to be well understood, their formation and dissociation mechanisms, along with the dynamics and kinetics associated with those processes, remain ambiguous. In order to take advantage of gas hydrates as an energy resource (e.g., methane hydrate), as a sequestration matrix in (for example) CO2 storage, or for chemical energy conservation/storage, a more detailed molecular level understanding of their formation and dissociation processes, as well as the chemical, physical, and biological parameters that affect these processes, is required. Spectroscopic techniques appear to be most suitable for analyzing the structures of gas hydrates (sometimes in situ), thus providing access to such information across the electromagnetic spectrum. A variety of spectroscopic methods are currently used in gas hydrate research to determine the composition, structure, cage occupancy, guest molecule position, and binding/formation/dissociation mechanisms of the hydrate. To date, the most commonly applied techniques are Raman spectroscopy and solid-state nuclear magnetic resonance (NMR) spectroscopy. Diffraction methods such as neutron and X-ray diffraction are used to determine gas hydrate structures, and to study lattice expansions. Furthermore, UV-vis spectroscopic techniques and scanning electron microscopy (SEM) have assisted in structural studies of gas hydrates. Most recently, waveguide-coupled mid-infrared spectroscopy in the 3–20 μm spectral range has demonstrated its value for in situ studies on the formation and dissociation of gas hydrates. This comprehensive review summarizes the importance of spectroscopic analytical techniques to our understanding of the structure and dynamics of gas hydrate systems, and highlights selected examples that illustrate the utility of these individual methods.  相似文献   

11.
S. Halazy  A. Krief 《Tetrahedron letters》1981,22(22):2135-2138
Functionalized alkylidine cyclopropanes have beeen prepared from 1-seleno 1-vinyl cyclopropanes using [2,3] sigmatropic rearrangement of their corresponding selenonium ylides. A comparison with sulphur analogues is presented.  相似文献   

12.
13.
The hyperspherical method is a widely used and successful approach for the quantum treatment of elementary chemical processes. It has been mostly applied to three-atomic systems, and current progress is here outlined concerning the basic theoretical framework for the extension to four-body bound state and reactive scattering problems. Although most applications only exploit the advantages of the hyperspherical coordinate systems for the formulation of the few-body problem, the full power of the technique implies representations explicitly involving quantum hyperangular momentum operators as dynamical quantities and hyperspherical harmonics as basis functions. In terms of discrete analogues of these harmonics one has a universal representation for the kinetic energy and a diagonal representation for the potential (hyperquantization algorithm). Very recently, advances have been made on the use of the approach in classical dynamics, provided that a hyperspherical formulation is given based on “classical” definitions of the hyperangular momenta and related quantities. The aim of the present paper is to offer a retrospective and prospective view of the hyperspherical methods both in quantum and classical dynamics. Specifically, regarding the general quantum hyperspherical approaches for three- and four-body systems, we first focus on the basis set issue, and then we present developments on the classical formulation that has led to applications involving the implementations of hyperspherical techniques for classical molecular dynamics simulations of simple nanoaggregates.  相似文献   

14.
Journal of Thermal Analysis and Calorimetry -  相似文献   

15.
Muonium atoms are found to add mainly to the N-atom and to the ortho and meta positions in pyridine in almost equal amounts, giving pyridinyl and 2-azacyclohexadienyl radicals and 3-azacyclohexadienyl radicals, respectively (no addition was observed at the para site); on protonation, as in a sample of PyH+ BF4, the reactivity follows the positive charge density, being enhanced for addition to the N(H+) position, reduced for the ortho/meta positions, and now conferring a significant yield of the para isomer. These results for genuine reactions of hydrogen atoms are discussed in view of studies of radical formation in these materials, made using EPR spectroscopy, when they are exposed to γ-rays in cryogenic matrices, for which mechanisms involving charge-neutralization of initial radical ions are proposed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
We describe in this article a process with which to obtain different ketones related to oleanolic and ursolic acids from a natural source, Salvia canariensis L., with minimal use of chromatography columns. Amongst the isolated compounds was 12α-bromo-3-oxo-olean-13, 28-olide (3), which was fully characterised, including a characterisation of its molecular configuration by X-ray crystallographic analysis by 1 and 2-dimensional NMR techniques.  相似文献   

17.
土壤的植物修复与超积累植物研究   总被引:12,自引:0,他引:12  
被污染土壤的植物修复将是未来更好与更廉价的修复技术,所以近年来对植物修复与超积累植物的研究兴趣日益增加。本文简要介绍了近期的发展趋势。目前研究的重点包括根际土壤微环境中的复杂反应与吸收过程,金属从土壤向植物根以及从植物根向叶的传输过程,金属在超积累植物中的定位与螯合作用等等。这是分析化学与环境科学及植物科学交叉研究的新领域,充满挑战。  相似文献   

18.
Journal of Radioanalytical and Nuclear Chemistry - This paper quantifies the inhalation and ingestion doses to different organs and tissues due to radon dissolved in drinking water. For this a...  相似文献   

19.
20.
Although the non-covalent interactions between proteins and salts contributing to the Hofmeister effects have been generally mapped, there are many questions regarding the specifics of these interactions. We report here studies involving the small protein ubiquitin and salts of polarizable anions. These studies reveal a complex interplay between the reverse Hofmeister effect at low pH, the salting-in Hofmeister effect at higher pH, and six anion binding sites in ubiquitin at the root of these phenomena. These sites are all located at protuberances of preorganized secondary structure, and although stronger at low pH, are still apparent when ubiquitin possesses no net charge. These results demonstrate the traceability of these Hofmeister phenomena and suggest new strategies for understanding the supramolecular properties of proteins.

Studying the supramolecular properties of Ubiquitin reveals six anion binding sites that contribute to the reverse Hofmeister effect at low pH and the salting-in Hofmeister effect at higher pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号