首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Journal of Thermal Analysis and Calorimetry - In this paper, ecological-friendly materials based on ethylene–propylene–diene terpolymer (EPDM) with improved thermal and radiation...  相似文献   

2.
PP/EPDM共混物热氧稳定性研究   总被引:2,自引:0,他引:2  
通过热氧加速老化的方法研究了不同的EPDM含量和抗氧剂对聚丙烯和三元乙丙橡胶共混物(PP/EPDM)热氧稳定性的影响.通过对老化前后试样的力学性能变化分析,热失重(TG)分析和扫描电镜(SEM)分析,结果表明:在热氧加速老化的初期,PP/EPDM共混物的拉伸强度随着时间的增长呈逐渐上升的趋势;在老化中期,共混物的拉伸强度变化不大;在老化后期,共混物的拉伸强度逐渐下降.在整个老化过程中,断裂伸长率都呈逐渐下降的趋势.而随着EPDM含量的增加,相应共混物的拉伸强度和断裂伸长率的下降减缓;相应共混物的分解温度得到较大的提高;抗氧剂的加入,能进一步提高共混物的热氧稳定性.  相似文献   

3.
4.
Journal of Thermal Analysis and Calorimetry - Thermal decomposition, thermal conductivity, specific heat and flammability of polydimethyl siloxane (PDMS) resin and three PDMS-based systems with...  相似文献   

5.
The results of studies of the effect of synthesized modifiers based on cyanosorbic acid on the thermal properties of cyanoacrylate adhesives have been presented.  相似文献   

6.
This paper analyses the stabilization effect induced by the presence of several compounds with antioxidant features (oleanolic acid, quercetin, capsaicin, metallic selenium and rosemary extract). The investigation are carried out for different additive concentrations (0, 0.25, 0.50 and 1% w/w), as well as for pairs of metallic selenium with the other four compounds. For antirad contribution to the delaying of radiochemical oxidation, modified and pristine EPDM samples were irradiated in GAMMATOR machinery provided with 137Cs source. While dose rate is 0.4 kGy.h−1, the total doses were 0, 10, 20 and 30 kGy, which are specific for radiosterilization. The results are obtained by application of two complementary techniques: isothermal chemiluminescence (180 °C) and FT-IR spectroscopy. From chemiluminescence determinations oxidation induction times and rate of oxidation were calculated as the main kinetic characteristics depicting the progress in the oxidative degradation of polymer substrate. FT-IR spectroscopy allows us to evaluate the evolution of hydroxyl and carbonyl accumulations.  相似文献   

7.
8.
After the surface silylation with 3-methacryloxypropyltrimethoxysilane, silica nanoparticles were further modified by 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO). The immobilization of DOPO on silica nanoparticles was confirmed by Fourier transform infrared spectroscopy, UV–visible spectroscopy, magic angle spinning nuclear magnetic resonance, and thermogravimetric analysis. By incorporating the DOPO-immobilized silica nanoparticles (5?wt%) into polypropylene matrix, the thermal oxidative stability exhibited an improvement of 62?°C for the half weight loss temperature, while that was only 26?°C increment with incorporation of virgin silica nanoparticles (5?wt%). Apparent activation energies of the polymer nanocomposites were estimated via Flynn–Wall–Ozawa method. It was found that the incorporation of DOPO-immobilized silica nanoparticles improved activation energies of the degradation reaction. Based on the results, it was speculated that DOPO-immobilized silica nanoparticles could inhibit the degradation of polypropylene and catalyze the formation of carbonaceous char on the surface. Thus, thermal stability was significantly improved.  相似文献   

9.
This study emphasizes, cross-linking potential of a simple di-carboxylic acid, namely, oxalic acid with type I collagen for the preparation of collagen based biomaterial for clinical applications. Further the study discusses the characteristics features of the cross-linked material in comparison with the standard cross-linker. In addition, the study also demonstrates the role of ionic interactions in providing the thermal stability and tensile strength to the cross-linked biopolymer material. Type I collagen from rat tail tendon treated with oxalic acid at optimized concentrations provided a biopolymer material without changing the triple helical pattern of collagen (CD spectrum) and also with 6–7 fold increase in tensile strength than native collagen. FTIR spectral details demonstrate the ionic interactions between collagen and oxalic acid. Thermal stability analyses of oxalic acid cross-linked biopolymer revealed, high thermal stability compared to materials of glutaraldehyde cross-linked. The results of the study suggest oxalic acid as a suitable cross-linker for collagen and it cross-link with collagen through ionic interactions.  相似文献   

10.
For environmental reasons, as well as the dwindling source of petroleum, a new class of environmentally acceptable and renewable biolubricants based on plant oils is available. Even though plant oils possess excellent lubricant-related properties, there are some concerns about using it as biolubricant base oil. In this study we present a series of structures derived from oleic acid to be used as synthetic biolubricant basestocks. Measuring of pour point (PP), flash point, viscosity index (VI), oxidation onset temperature (OT) and signal maximum temperature (SMT) was carried out for each compound. Furthermore, the friction and wear properties were measured using a high-frequency reciprocating rig (HFRR). The resulting product structures were confirmed by NMR and FTIR spectroscopic analysis. The results showed that ethylhexyl 9-(octanoyloxy)-10-(behenoxy)octadecanoate with behenyl mid-chain ester exhibited the most favorable low temperature performance (PP ?48 °C) and ethylhexyl 9-(octanoyloxy)-10-(octyloxy)octadecanoate octyl mid-chain ester exhibited higher oxidation stability (OT 142 °C) than the other synthetic ester oils. On the other hand, the highest ball wear scan diameter was obtained for ethylhexyl 9-(octanoyloxy)-10-(behenoxy)octadecanoate while the lowest value was obtained for 9-hydroxy-10-octyloxyoctadecanoic acid. Overall, it was concluded that these synthetic ester oils have potential in formulation of industrial fluids for different temperature applications.  相似文献   

11.
We prepared sulfonated polyphosphazenes having various aryloxy substituents, and studied their thermal stabilities and membrane properties. Sulfonated polyphosphazenes were synthesized by the reaction of polydichlorophosphazene with sodium aryloxides and subsequent sulfonation with fuming sulfuric acid. With increasing the degree of sulfonation, the polymers showed higher proton conductivity, but suffered more from swelling in an aqueous solution. We introduced a hydroxymethylphenoxy group onto the phosphazene backbone as a self‐crosslinkable group by reaction of poly(dichlorophosphazene) and a sodium salt of 4‐hydroxymethylphenol. When a film of a sulfonated polymer having a methylol group was heated at 80 °C under vacuum for 1 h, it became insoluble in NMP, indicating the formation of a network structure. We investigated the crosslinking reaction of the polymers by DSC and FTIR. The crosslinking reaction proceeded only in the sulfonated polymers. Because the sulfonated polymers provide acidic protons, the methylol groups became more electrophilic and reacted with neighboring aromatic rings. A condensation reaction between themselves could also occur. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5850–5858, 2008  相似文献   

12.
A mercapto derivative of diacetylene was used as the hydrophilic ligand to prepare Janus nanoparticles by using hydrophobic hexanethiolate-protected gold (AuC6, diameter 5 nm) nanoparticles as the starting materials. The amphiphilic surface characters of the Janus nanoparticles were verified by contact angle measurements, as compared to those of the bulk-exchange counterparts where the two types of ligands were distributed rather homogeneously on the nanoparticle surface. Dynamic light scattering studies showed that the Janus nanoparticles formed stable superstructures in various solvent media that were significantly larger than those by the bulk-exchange counterparts. This was ascribed to the amphiphilic characters of the Janus nanoparticles that rendered the particles to behave analogously to conventional surfactant molecules. Notably, because of the close proximity of the diacetylene moieties on the Janus nanoparticle surface, exposure to UV irradiation led to effective covalent cross-linking between the diacetylene moieties of neighboring ligands, as manifested in UV-vis and fluorescence measurements where the emission characteristics of dimers and trimers of diacetylene were rather well-defined, in addition to the monomeric emission. In contrast, for bulk-exchange nanoparticles, no trimer emission could be identified, and the intensity of dimer emission was markedly lower (though the intensity increased with increasing diacetylene coverage on the particle surface) under the otherwise identical experimental conditions. This is largely because the diacetylene ligands were distributed on the entire particle surface, and it was difficult to find a large number of ligands situated closely so that the stringent topochemical principles for the polymerization of diacetylene derivatives could be met. Importantly, the cross-linked Janus nanoparticles were found to exhibit marked enhancement of the structural integrity, which was attributable to the impeded surface diffusion of the thiol ligands on the nanoparticle surface, as manifested in fluorescence measurements of aged nanoparticles.  相似文献   

13.
Chemical modification was evaluated to stabilize pig kidney d-amino acid oxidase (pkDAAO), which is required for analytical determination of d-amino acids. Optimization of modification conditions was performed to obtain high recovery yield and stability, and chemical modification at 30°C for 12 h with a highly concentrated enzyme solution gave dextran-conjugated pkDAAO with a 70% yield of activity. pkDAAO was stable at less than 55°C at pH 6.0, while the conjugated enzyme was stable even at 70°C. In addition, the conjugated enzyme showed decreased K m values for d-amino acids. Because of these outstanding charcteristics, this new material is expected to be available for use as a liquid assay reagent.  相似文献   

14.
A review is presented of the applications of thermoanalytical techniques to problems encountered in the measurement and control of air pollution. A number of suggestions are offered regarding new or extended applications of these techniques.  相似文献   

15.
Polytetrafluoroethylene (PTFE) has never been reported to form a network structure when subjected to high energy radiation. Results obtained in this work indicates that when irradiation is performed under 330–340°C in vacuo PTFE can be crosslinked through irradiation. Crosslinked PTFE was found to gain a great improvement in both high temperature mechanical properties and radiation stability.  相似文献   

16.
《中国化学快报》2022,33(7):3534-3538
Due to the rigid Si-O-Si backbone, silicone rubber (SR) have a widespread application in extreme environment such as high temperature and high-level radiation. However, the radiation stability of SR still does not meet the practical needs in special radiation environments. Herein we prepared epoxy POSS(ePOSS)/SR nanocomposites with excellent thermal stability and radiation resistance. As a physical crosslinking point in the SR, addition of small amount of ePOSS not only enhanced the mechanical properties of the matrix, but also improved its thermal stability greatly due to their good compatibility. ePOSS/SR had higher radiation stability in air than SR owing to the inhibition of radiation oxidation by ePOSS, and the yield of main gaseous radiolysis products (CH4, H2, CO and CO2) of SR and ePOSS/SR nanocomposites was determined. By analyzing the changes of chemical structure, thermal properties and mechanical properties of the ePOSS/SR nanocomposite, combined with the characteristics of gas products after γ-irradiation, the radiation induced crosslinking and degradation mechanism of the nanocomposites was proposed comprehensively.  相似文献   

17.
An effect of a cyclic low molecular-weight polymertrans-polyoctenamer rubber (TOR) on the thermal stability of diene rubbers and their vulcanizates was investigated. The investigation was carried out in the air and nitrogen atmospheres using thermogravimetry, DSC and simultaneous thermoanalytical methods. The thermal stability indexes:T 5,T max and activation energy of degradation (E), as well asT g andT m values, have been determined.It was found thattrans-polyoctenamer (TOR) increases of the thermal stability indices of raw diene rubbers and their vulcanizates. The results show that the thermal degradation of diene rubbers occurred at higher temperature if they were blended with TOR. In our opinion, intermolecular structures formed between the cyclic low-molecular weight polymer and some linear rubber molecules may be the reason for the higher thermal stability of these rubber blends.The work was supported by State Committee for Research, Poland. Grant No. 7.T08 E 032-08.  相似文献   

18.
Zhang K  Jian A  Zhang X  Wang Y  Li Z  Tam HY 《Lab on a chip》2011,11(7):1389-1395
We present a unique bubble generation technique in microfluidic chips using continuous-wave laser-induced heat and demonstrate its application by creating micro-valves and micro-pumps. In this work, efficient generation of thermal bubbles of controllable sizes has been achieved using different geometries of chromium pads immersed in various types of fluid. Effective blocking of microfluidic channels (cross-section 500 × 40 μm(2)) and direct pumping of fluid at a flow rate of 7.2-28.8 μl h(-1) with selectable direction have also been demonstrated. A particular advantage of this technique is that it allows the generation of bubbles at almost any location in the microchannel and thus enables microfluidic control at any point of interest. It can be readily integrated into lab-on-a-chip systems to improve functionality.  相似文献   

19.
This paper explores the relationship between the shapes of temperature-time curves obtained from experimental data recorded by means of constant rate thermal analysis (CRTA) and the kinetic model followed by the thermal degradation reaction. A detailed shape analysis of CRTA curves has been performed as a function of the most common kinetic models. The analysis has been validated with simulated data, and with experimental data recorded from the thermal degradation of polytetrafluoroethylene (PTFE), poly(1,4-butylene terephthalate) (PBT), polyethylene (PE) and poly(vinyl chloride) (PVC). The resulting temperature-time profiles indicate that the studied polymers decompose through phase boundary, random scission, diffusion and nucleation mechanisms respectively. The results here presented demonstrate that the strong dependence of the temperature-time profile on the reaction mechanism would allow the real kinetic model obeyed by a reaction to be discerned from a single CRTA curve.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号