首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photogalvanic effect has been studied in three systems using photogalvanic cells and NaLS-ascorbic acid-azur A, NaLS-ascorbic acid-azur B, NaLS-ascorbic acid-azur C systems. The photopotential and photocurrent generated by these systems are 7700, 9710, 623·0 mV and 160·0, 185·0, 145·0 (μA respectively. The effects of different parameters on the electrical outputs of the cell have been observed and current-voltage characteristics of the cell studied, and a mechanism has been proposed for the generation of photocurrent in photogalvanic cells. The conversion efficiencies for azur A, azur B and azur C are 0·5461, 0·9646 and 0·4567% and storage capacity 110, 135 and 95 min respectively.  相似文献   

2.
化石能源枯竭以及地球环境污染已经成为并且在未来相当长一段时期内都将是人类面临的最严峻的危机之一.因此,寻找清洁的替代能源形式、有效的能量存储方式以及高效的能源利用途径是目前科学研究的热点.自从其高质量样品被制备和研究以来,石墨烯一直吸引着全世界科研工作者的兴趣;它的一系列独特的物理化学性质,为其在能源领域的应用提供了无限前景.本文对石墨烯在能源领域的最新研究进展以及其工业化应用作了简要综述,具体内容包括石墨烯材料在以下领域的应用:能源储存器件类,如超级电容器和锂离子电池;能源转化装置类,如燃料电池和太阳能电池.  相似文献   

3.
Breakthrough alternative technologies are urgently required to alleviate the critical need to decarbonise our energy supply. We showcase non-conventional approaches to battery and solar energy conversion and storage (ECS) system designs that harness key attributes of immiscible electrolyte solutions, especially the membraneless separation of redox active species and ability to electrify certain liquid–liquid interfaces. We critically evaluate the recent development of membraneless redox flow batteries based on biphasic systems, where one redox couple is confined to an immiscible ionic liquid or organic solvent phase, and the other couple to an aqueous phase. Common to all solar ECS devices are the abilities to harvest light, leading to photo-induced charge carrier separation, and separate the products of the photo-reaction, minimising recombination. We summarise recent progress towards achieving this accepted solar ECS design using immiscible electrolyte solutions in photo-ionic cells, to generate redox fuels, and biphasic “batch” water splitting, to generate solar fuels.  相似文献   

4.
Understanding physicochemical properties of liquid electrolytes is essential for predicting and optimizing device performance for a wide variety of emerging energy technologies, including photoelectrochemical water splitting, supercapacitors, and batteries. In this work, we review recent progress and open challenges in predicting structural, dynamical, and electronic properties of the liquids using first-principles approaches. We briefly summarize the basic concepts of first-principles molecular dynamics (FPMD), and we discuss how FPMD methods have enriched our understanding of a number of liquids, including aqueous solutions, organic electrolytes and ionic liquids. We also discuss technical challenges in extending FPMD simulations to the study of liquid electrolytes in more complex environments, including the interface between electrolytes and electrodes, which is a key component in many energy storage and conversion systems.  相似文献   

5.
6.
As a close relative of ferroelectricity,antiferroelectricity has received a recent resurgence of interest driven by technological aspirations in energy-efficient applications,such as energy storage capacitors,solid-state cooling devices,explosive energy conversion,and displacement transducers.Though prolonged efforts in this area have led to certain progress and the discovery of more than 100 antiferroelectric materials over the last 70 years,some scientific and technological issues remain unresolved.Herein,we provide perspectives on the development of antiferroelectrics for energy storage and conversion applications,as well as a comprehensive understanding of the structural origin of antiferroelectricity and field-induced phase transitions,followed by design strategies for new lead-free antiferroelectrics.We also envision unprecedented challenges in the development of promising antiferroelectric materials that bridge materials design and real applications.Future research in these directions will open up new possibilities in resolving the mystery of antiferroelectricity,provide opportunities for comprehending structure-property correlation and developing antiferroelectric/ferroelectric theories,and suggest an approach to the manipulation of phase transitions for real-world applications.  相似文献   

7.
焦龙  尹丽娜  钟汉斌  马羚  李睿  王芹 《化学通报》2022,85(10):1243-1248,1254
研究构建了三苯胺类化合物分子结构与相应染料敏化太阳能电池能量转化效率(PCE)之间的全息定量构效关系(HQSAR)模型。当fragment distinction、fragment size、hologram length和principal components分别为“C、DA”、“4-7”、“199”和“6”时,可以获得最优HQSAR模型。采用外部测试集验证和留一交叉验证对所建立模型进行检验,外部测试集验证中CCC和 Q2F3分别为0.933和0.892,留一交叉验证中其q2cv和r2分别为0.791和0.902,表明所建立模型具有较好的拟合效果和预测能力。通过所建立HQSAR模型的分子贡献图可知,环戊并二噻吩基团的存在有利于提高PCE值,长烷基链的存在可能降低PCE值。  相似文献   

8.
Current energy crisis and environmental issues, including depletion of fossil fuels, rapid industrialization, and undesired CO2 emission resulting in global warming has created havoc for the global population and significantly affected the quality of life. In this scenario the environmental problems in the forefront of research priorities. Development of renewable energy resources particularly the efficient conversion of solar light to sustainable energy is crucial in addressing environmental problems. In this regard, the synthesis of semiconductors-based photocatalysts has emerged as an effective tool for different photocatalytic applications and environmental remediation. Among different photocatalyst options available, graphene and graphene derivatives such as, graphene oxide (GO), highly reduced graphene oxide (HRG), and doped graphene (N, S, P, B-HRG) have become rising stars on the horizon of semiconductors-based photocatalytic applications. Graphene is a single layer of graphite consisting of a unique planar structure, high conductivity, greater electron mobility, and significantly very high specific surface area. Besides, the recent advancements in synthetic approaches have led to the cost-effective production of graphene-based materials on a large-scale. Therefore, graphene-based materials have gained considerable recognition for the production of semiconducting photocatalysts involving other semiconducting materials. The graphene-based semiconductors photocatalysts surpasses electron-holes pairs recombination rate and lowers the energy band gap by tailoring the valence band (VB) and conduction band (CB) leading to the enhanced photocatalytic performance of hybrid photocatalysts. Herein, we have summarized the latest developments in designing and fabrication of graphene-based semiconducting photocatalysts using a variety of commonly applied methods such as, post-deposition methods, in-situ binding methods, hydrothermal and/or solvothermal approaches. In addition, we will discuss the photocatalytic properties of the resulting graphene-based hybrid materials for various environmental remediation processes such as; (i) clean H2 fuel production, photocatalytic (ii) pollutants degradation, (iii) photo-redox organic transformation and (iv) photo-induced CO2 reduction. On the whole, by the inclusion of more than 300 references, this review possibly covered in detail the aspects of graphene-based semiconductor photocatalysts for environmental remediation processes. Finally, the review will conclude a short summary and discussion about future perspectives, challenges and new directions in these emerging areas of research.  相似文献   

9.
The photochemistry of dye is playing a significant role for understanding the mechanism of electron transfer reactions in photoelectrochemical devices such as photogalvanic cells, DSSC, semiconductor photo-catalysis, photoconductors, etc. Oxazines (Brilliant Cresyl Blue and Nile Blue O) and thiazines (Azur A, Azur B, Azur C, Methylene Blue and Toluidine Blue O) dyes have been used widely as a photosensitizer with and without surfactants in the photogalvanic cells for solar power conversion and storage. Since, the stability and solubility of photosensitizers (dyes) are increased in the presence of surfactant and these properties lead to enhance the electrical output of the photogalvanic cells. Therefore, here we have studied the extent of interaction of different dyes with sodium dodecyl sulphate (SDS), find out the order of stability of dye–SDS on the basis of magnitudes of shifting in λmax of dye monomer and try to correlate order of dye–SDS interaction with already reported electrical output data of photogalvanic cells. Brilliant Cresyl Blue, Nile Blue O, Azur A and TB O have shown red shifting while Azur B, Azur C and MB have shown blue shifting in their λmax value with SDS, which indicates formation of dye–surfactant complex. But, the extent of formation of complex for different dyes with SDS was different due to change in their alkyl groups. Dyes with red shifting have greater stability in excited state as well as higher electrical output data of the cell than dye with blue shifting. On the basis of both red and blue shifting, order of stability of dyes–SDS complex was found as: Brilliant Cresyl Blue?>?Toluidine Blue O?>?Azur A?>?Nile Blue?>?Azur B?>?Methylene Blue?>?Azur C. The order of electrical output values of these dyes in photogalvanic cells have also been supported by literature data in the presence of SDS. Hence, the dye–surfactant complex which would have greater stability in excited state might be more useful for improvement of conversion efficiency and storage capacity of photogalvanic cells in the future.  相似文献   

10.
Organometallic molecules have become a field of intense activities in the optoelectronic research. They hold great promise as versatile functional materials for use in energy interconversions. This special issue presents a critical perspective of the field, with emphasis on fundamental concepts and current applications. Practical applications are enumerated and illustrated by an example. These include systems where light is transformed into electricity and vice versa. New synthetic methods need to be developed to produce technologically useful materials with specific functional roles.  相似文献   

11.
The direct conversion of sunlight to electricity via photoelectrochemical solar cells is an attractive option that has been pursued for nearly two decades in several laboratories. In this paper, we review the principles and performance features of very efficient solar cells that are being developed in our laboratories. These are based on the concept of dye-sensitization of wide bandgap semiconductors used in the form of mesoporous nanocrystalline membrane-type films. The key feature is charge injection from the excited state of an anchored dye to the conduction band of an oxide semiconductor such as TiO2. In the use of the semiconductor in the form of high surface area, highly porous film offers several unique advantages: monomeric distribution of a large quantity of the dye in a compact (few micron thick) film, efficient charge collection and drastic inhibition of charge recombination (‘capture of charge carriers by oxidized dye’). Near quantitative efficiency for charge collection for monochromatic light excitation gives rise to sunlight conversion efficiency in the range of 8–10% This has led to fruitful collaboration with several industrial partners. Possible applications and commercialization of these solar cells and also other practical applications of nanosized films are briefly outlined.  相似文献   

12.
13.
《Mendeleev Communications》2023,33(3):306-310
New small molecule photovoltaic materials containing benzimidazole fragment were prepared by cross-coupling of the corresponding 1-bromo-4-(imidazol-2-yl)benzenes with multiborylated/stannylated polycyclic (het)arenes. Energies of HOMO/LUMO levels were calculated from cyclic voltammetry and UV/VIS spectroscopy data and are within the ranges –5.27... –5.73 and –2.33...–2.89 eV, respectively. Solar cells based on three different perovskites as light absorbing layers and compound SM7 as electron transporting material demonstrated power conversion efficiency values up to 10.78% without doping additives or perovskite engineering.  相似文献   

14.
In the past three decades, dye-sensitized solar cells (DSSCs) have gained increased recognition as a potential substitute for inexpensive photovoltaic (PV) devices, and their maximum efficiency has grown from 7% to 14.3%. Recent developments in DSSCs have attracted a plethora of research activities geared at realizing their full potential. DSSCs have seen a revival as the finest technology for specific applications with unique features such as low-cost, non-toxic, colourful, transparent, ease of fabrication, flexibility, and efficient indoor light operation. Several organic materials are being explored and employed in DSSCs to enhance their performance, robustness, and lower production costs to be viable alternatives in the solar cell markets. This review provides a concise summary of the developments in the field over the past decade, with a special focus on the incorporation of organic materials into DSSCs. It covers all elements of the DSSC technology, including practical approaches and novel materials. Finally, the emerging applications of DSSCs, and their future promise are also discussed.  相似文献   

15.
Modifying the electron‐withdrawing capability in donor–acceptor conjugated copolymers allows designing new polymers with better optical properties. These materials have been successfully applied in bulk heterojunction solar cell devices, and recently a great progress in the enhancement of power conversion efficiencies (PCE) has been achieved. In 2006 Scharber proposed a design rule to obtain PCE values over 10%, optimizing the orbital energy levels of the donor material. The present work proposes a methodology capable to predict theoretically the best efficiencies imparted by a group of 65 conjugated monomeric units selected from the literature, generating 2080 possible DA combinations. The geometries, frontier levels and optical properties were estimated by DFT methods. Based on the results, it was possible to predict the PCE of the most promising 22 copolymers. The results of the calculations indicated that several polymers investigated showed the predicted PCE between 9% and 10%. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 919–927  相似文献   

16.
Our laboratory has recently developed a device employing immobilized F0F1 adenosine triphosphatase (ATPase) that allows synthesis of adenosine triphosphate (ATP) from adenosine 5′-diphosphate and inorganic phosphate using solar energy. We present estimates of total solar energy received by Earth’s land area and demonstrate that its efficient capture may allow conversion of solar energy and storage into bonds of biochemicals using devices harboring either immobilized ATPase or NADH dehydrogenase. Capture and storage of solar energy into biochemicals may also enable fixation of CO2 emanating from polluting units. The cofactors ATP and NADH synthesized using solar energy could be used for regeneration of acceptor d-ribulose-1,5-bisphosphate from 3-phosphoglycerate formed during CO2 fixation.  相似文献   

17.
《印度化学会志》2023,100(2):100870
The structural characteristics of the heteroatom substituted fullerene to improve its physical and chemical properties are discussed in this work, highlighting possible applications in aromaticity, photocatalysis, solar cells, and superconducting materials. The energy gap of doped fullerene lowers significantly, making C31Nb a more reactive material and transforming it into an efficient superconductor. The molecular structure, energy and relative stabilities of the heterofullerene were examined and evaluated to determine the material's identification. According to the results analysis, the extra niobium atom and substituted carbon atom improve the electronic stability of heterofullerene. Using 13C NMR nuclear independent chemical shift, the stability of each fullerene and aromatic found in nature is discovered. Furthermore, the simulated infrared spectra of fullerene are reviewed, and the major distinctive peaks are given to different functional groups. NBO study which shows the intermolecular charge transfer from the donor to the acceptor in doped fullerene, demonstrates that the strong intermolecular contact between carbon and niobium atoms makes this material a notable material for NLO property.  相似文献   

18.
19.
A key challenge in the development of electrochemical energy storage (EES) is the design and engineering of electrode materials for electrochemical reactions. Transition metal oxalates (TMOxs) have been widely used in various EES applications due to their low cost, simple synthesis, and excellent electrochemical performance. In this review, the recent advances in the design and engineering of transition metal oxalate-based micro- and nanomaterials for EES are summarized. Specifically, the survey will focus on three types of micro- and nano-scale TMOxs (monometallic, bimetallic, and trimetallic TMOxs), their composites (TMOx-metal oxide, TMOx-hydroxide, TMOx-GO, and TMOx-MOFs composites), and derivatives, including transition metal oxides (TiO2, V2O5, MnxOy, Co3O4, NiO, CuO, and Nb2O5), multi-transition metal oxides (MCo2O4 (M = Ni, Cu, and Zn), NiMn2O4, and NxOy-MxOy), transition metal sulfide (NiS2), and carbon materials (ordinary carbon, GO and their composites), within the context of their intrinsic structure and corresponding electrochemical performance. A range of experimental variables will be carefully analyzed, such as sample synthesis, crystal structure, and electrochemical reaction mechanism. The applications of these materials as EES electrodes are then featured for supercapacitors (SCs) and lithium-ion batteries (LIBs). We conclude the review with a perspective of future research prospects and challenges.  相似文献   

20.
A series of novel metal-free organic dyes TC301-TC310 with relatively high HOMO levels were synthesized and applied in dye-sensitized solar cells (DSCs) based on electrolytes that contain Br(-)/Br(3)(-) and I(-)/I(3)(-). The effects of additive Li(+) ions and the HOMO levels of the dyes have an important influence on properties of the dyes and performance of DSCs. The addition of Li(+) ions in electrolytes can broaden the absorption spectra of the dyes on TiO(2) films and shift both the LUMO levels of the dyes and the conduction band of TiO(2), thus leading to the increase of J(sc) and the decrease of V(oc). Upon using Br(-)/Br(3)(-) instead of I(-)/I(3)(-), a large increase of V(oc) is attributed to the enlarged energy difference between the redox potentials of electrolyte and the Fermi level of TiO(2), as well as the suppressed electron recombination. Incident photon to current efficiency (IPCE) action spectra, electrochemical impedance spectra, and nanosecond laser transient absorption reveal that both the electron collection yields and the dye regeneration yields (Φ(r)) depend on the potential difference (the driving forces) between the oxidized dyes and the Br(-)/Br(3)(-) redox couple. For the dyes for which the HOMO levels are more positive than the redox potential of Br(-)/Br(3)(-) sufficient driving forces lead to the longer effective electron-diffusion lengths and almost the same efficient dye regenerations, whereas for the dyes for which the HOMO levels are similar to the redox potential of Br(-)/Br(3)(-), insufficient driving forces lead to shorter effective electron-diffusion lengths and inefficient dye regenerations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号