首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.

In this research, the n-butyl palmitate was synthesized using the esterification reaction of the PA with n-butanol. The 1H nuclear magnetic resonance and Fourier transform infrared illustrated that the hydroxyl group and carboxyl group disappeared, and the ester bond appeared after the reaction, explaining that n-butyl palmitate was successfully fabricated. The differential scanning calorimetry indicated that the phase-transition temperature and latent heat are 12.6 °C and 127.1 J g?1, which was suited to use in low-temperature fields such as food, pharmaceutical, and biomedical. The thermogravimetric analysis suggested that it had great thermal stability during the phase change process. In addition, the thermal conductivity of the n-butyl palmitate was slightly higher than other fatty acid ester, and the 500 thermal cycles test results indicated that it had excellent thermal reliability. Therefore, the n-butyl palmitate is deduced to share great thermal energy storage ability in terms of latent heat thermal energy system applications.

  相似文献   

2.

In this study, tetradecanol–palmitic acid/expanded perlite composites containing carbon fiber (TD-PA/EP-CF CPCMs) were prepared by a vacuum impregnation method. Binary eutectic mixtures of PA and TD were utilized as thermal energy storage material in the composites, where EP behaved as supporting material. X-ray diffraction demonstrated that crystal structures of PA, TD, EP, and CF remained unchanged, confirming no chemical interactions among raw materials besides physical combinations. The microstructures indicated that TD-PA was sufficiently absorbed into EP porous structure, forming no leakage even in molten state. Differential scanning calorimetry estimated the melting temperature of TD-PA/EP-CF CPCM to 33.6 °C, with high phase change latent heat (PCLH) of 138.3 kJ kg−1. Also, the freezing temperature was estimated at 29.7 °C, with PCLH of 137.5 kJ kg−1. The thermal cycling measurements showed that PCM composite had adequate stability even after 200 melting/freezing cycles. Moreover, the thermal conductivity enhanced from 0.48 to 1.081 W m−1 K−1 in the presence of CF. Overall, the proposed CPCMs look promising materials for future applications due to their appropriate phase change temperature, elevated PCLH, and better thermal stability.

  相似文献   

3.
Hybrids containing silicon, phosphorous and nitrogen were prepared by the sol-gel method and compared with pure epoxy. The silicon, phosphorous and nitrogen components were successfully incorporated into the networks of polymer. Thermogravimetric analysis (TGA) was used for rapid evaluation of the thermal stability of different materials. The integral procedure decomposition temperature (IPDT) has been correlated the volatile parts of polymeric materials and used for estimating the inherent thermal stability of polymeric materials. The IPDT of pure epoxy was 464 °C and the IPDTs of hybrids were higher than that of pure epoxy. The thermal stability of hybrids increased with the contents of inorganic components. The inorganic components can improve the thermal stability of pure epoxy.Two methods have been used to study the degradation of hybrids containing silicon, phosphorous and nitrogen hybrid during thermal analysis. These investigated methods are Kissenger, Ozawa's methods. The activation energies (Ea) were obtained from these methods and compared. It is found that the values of Ea for modified epoxy hybrids are higher than that of pure epoxy. The hybrids of high activation energy possess high thermal stability.  相似文献   

4.

The synthesis of phase change materials based on NaCl–CaCl2 molten salt mixture and mesoporous silica was investigated. The influence of mesoporous silica porosity and salt concentration on the thermal energy storage properties of the resulting materials is discussed. The nanocomposite samples were characterized by X-ray diffraction, differential scanning calorimetry, infrared spectroscopy, thermogravimetry, scanning electron microscopy and X-ray photoelectron spectroscopy. The mesoporous silica was found to act as a reactive matrix for the molten salts. Composite samples with up 95% wt. salt can be obtained and used as shape-stabilized phase change materials. The materials have heat of fusion values of up to 60.8 J g?1 and specific heat capacity between 1.0 and 1.1 J g?1 K?1. The samples exhibit thermal stability up to 700 °C and can be used for high-temperature thermal energy storage through both latent and sensible heat storage mechanisms.

  相似文献   

5.
Linear isocyanate‐terminated poly(urethane‐imide) (PUI) with combination of the advantages of polyurethane and polyimide was directly synthesized by the reaction between polyurethane prepolymer and pyromellitic dianhydride (PMDA). Then octaaminophenyl polyhedral oligomeric silsesquioxane (OapPOSS) and PUI were incorporated into the epoxy resin (EP) to prepare a series of EP/PUI/POSS organic–inorganic nanocomposites for the purpose of simultaneously improving the heat resistance and toughness of the epoxy resin. Their thermal degradation behavior, dynamic mechanical properties, and morphology were studied with thermal gravimetric analysis (TGA), dynamic mechanical analysis (DMA), and transmission electron microscope (TEM). The results showed that the thermal stability and mechanical modulus was greatly improved with the addition of PUI and POSS. Moreover, the EP/PUI/POSS nanocomposites had lower glass transition temperatures. The TEM results revealed that POSS molecules could self assemble into strip domain which could switch to uniform dispersion with increasing the content of POSS. All the results could be ascribed to synergistic effect of PUI and POSS on the epoxy resin matrix. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
An intercrosslinked network of bismaleimide modified polyurethane‐epoxy systems were prepared from the bismaleimide having ester linkages, polyurethane modified epoxy and cured in the presence of 4,4′‐diaminodiphenylmethane. Infrared spectral analysis was used to confirm the grafting of polyurethane into the epoxy skeleton. The prepared matrices were characterized by mechanical, thermal and morphological studies. The results obtained from the mechanical and thermal studies reveal that the incorporation of polyurethane into the epoxy skeleton increases the mechanical strength and decreases the glass transition temperature, thermal stability and heat distortion temperature. Whereas, the incorporation of bismaleimide having ester linkages into polyurethane modified epoxy systems increases the thermal stability, tensile and flexural properties and decreases the impact strength, glass transition temperature and heat distortion temperature. Surface morphology of polyurethane modified epoxy and bismaleimide modified polyurethane‐epoxy systems were studied using scanning electron microscopy. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.

In this research, it is aimed to enhance the heat transfer properties of the carbon nanotubes through nitrogen doping. To this end, nitrogen-doped multiwall carbon nanotubes (N-CNTs) were synthesized via chemical vapor deposition method. For supplying carbon and nitrogen during the synthesis of N-CNTs, camphor and urea were used, respectively, at 1000 °C over Co–Mo/MgO nanocatalyst in a hydrogen atmosphere. N-CNTs with three different nitrogen loadings of 0.56, 0.98, and 1.38 mass% were synthesized, after which, water/N-CNT nanofluids of these three samples with concentrations of 0.1, 0.2, and 0.5 mass% were prepared. To obtain a stable nanofluid, N-CNTs were functionalized by nitric acid followed by stabilizing in water by employing the ultrasonic bath. Investigation on the stability of the samples showed a high stability level for the prepared water/N-CNT nanofluids in which the zeta potential of ??43.5 mV was obtained for the best sample. Also for studying the heat transfer properties, the thermal conductivity in the range of 0.1–0.5 mass% and convection heat transfer coefficients of nanofluids in the range of 0.1–0.5 mass%, and Reynolds number in the range of 4000–9000 were evaluated. The results showed 32.7% enhancement of the convection heat transfer coefficients at Reynolds number of 8676 and 27% increase in the thermal conductivity at 0.5 mass% and 30 °C.

  相似文献   

8.
In this work, a novel core–shell material has been manufactured in order to enhance the thermal conductivity of epoxy‐based composites. The polymer derived ceramics technique has been used to produce fillers whose core is composed of a standard material – silica, and whose outer layer consists of a boron nitride or silicon nitride shell. The synthesized filler was characterized by infrared spectroscopy, X‐ray diffraction, and scanning electron microscopy coupled with an energy dispersive spectroscopy analysis. The successful formation of core–shell structure was proven. Composite samples based on an epoxy resin filled with 31 vol% of synthetized core–shell filler have been investigated in order to determine the effective thermal conductivity of the modified system. The resulting core–shell composite samples exhibited improvements in thermal conductivity of almost 30% in relation to standard systems, making them a promising material for heat management applications. Additionally, the temperature dependence of the thermal conductivity was investigated over a broad temperature range indicating that the thermal behavior of the composite with incorporated core–shell filler is stable. This stability is a crucial factor when considering the potential of using this technology in applications such as electronics and power systems. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
A series of epoxy resin nanocomposites modified by polyurethane and organically modified montmorillonite was prepared by effectively dispersing the organically modified montmorillonite in interpenetrating polymer networks (IPNs) of epoxy and polyurethane via the sequential polymeric technique and in situ polymerization. The tribological performance of the resultant EP/PU nanocomposites was investigated by a pin‐on‐disc tester, and the results showed that adding polyurethane and organically modified clay to the EP matrix had a synergistic effect on improving tribological performance of EP/PU nanocomposites. The morphologies of the worn surface were studied by scanning electron microscopy (SEM) observations, and the results indicated that the mechanism of improving tribological performance of EP/PU nanocomposites was different from that of pure EP or pure EP/PU IPNs. The thermal behavior of these nanocomposites was also investigated by thermogravimeric analysis (TGA), and the results indicated that adding organically modified clay to the matrix remedied the deterioration of the thermal degradation temperature of the interpenetrating networks. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.

Highly conductive nanoparticles were proposed to be dispersed into phase change materials (PCMs) such as paraffin wax for heat transfer enhancement. The mixture, often referred to as nanoparticle-enhanced phase change material (NePCM), has been studied extensively for latent heat energy storage but with conflicting results. This study attempts to understand this problem by investigating the stability of NePCMs under multiple thermal (melting–solidification) cycles, which has not been well explained in previous studies. We believe that stability of a NePCM is prerequisite for any experimental investigation of its thermal properties or application. In this study, paraffin wax was chosen as the base material. Three different types of nanoparticles were tested, i.e., multi-walled carbon nanotubes, graphene nanoplatelets, and aluminum oxide nanoparticles (Al2O3). The nanoparticles were dispersed into paraffin wax at varying mass fractions using mechanical dispersion methods (sonication, stirring) with and without different surfactants. Stability of different mixtures was investigated after consecutive thermal cycles performed in an environmental chamber. Significant coagulation and deposition of nanoparticles were found after a few thermal cycles regardless of the nanoparticle type, concentration, or dispersion method. Different boundary conditions in heating were also examined for their effects. None of these methods led to long-term stable NePCMs. The “negative” results from this study indicate that long-term stability of NePCM (at least for the paraffin wax and nanoparticles tested) remains a major challenge and requires further research with a multidisciplinary approach.

  相似文献   

11.
New hydrophobic protic ionic liquid, 2-butylaminoimidazolinium bis(trifluoromethylsulfonyl)imide (BAIM-TFSI), has been synthesized. The ionic liquid showed good thermal stability to at least 350 °C. The conductivity of BAIM-TFSI determined by electrochemical impedance method was found to be 5.6 × 10?2 S/cm at 140 °C. Homogeneous composite films based on commercial polyimide (PI) Matrimid and BAIM-TFSI containing 30–60 wt% of ionic liquid were prepared by casting from methylene chloride solutions. Thermogravimetric analysis data indicated an excellent thermal stability of PI/BAIM-TFSI composites and thermal degradation points in the temperature range 377 °C–397 °C. The addition of ionic liquid up to 50 wt% in PI films does not lead to any significant deterioration of the tensile strength of the polymer. The dynamic mechanical analysis results indicated both an increase of storage modulus E′ of PI/BAIM-TFSI composites at room temperature and a significant E′ decrease with temperature compared with the neat polymer. The cross-linking of the PI with polyetheramine Jeffamine D-400 allowed to prepare PI/Jeffamine/BAIM-TFSI (50%) membrane with E′ value of 300 MPa at 130 °C. The ionic conductivity of this cross-linked composite membrane reached the level of 10?2 S/cm at 130 °C, suggesting, therefore, its potential use in medium-temperature fuel cells operating in water-free conditions.  相似文献   

12.
The eutectic mixture of octacosane (C28)–heptadecane (C17) as core material was successfully encapsulated with an acrylic-based polymer (polymethylmethacrylate; PMMA) as shell material through emulsion polymerization. The polymeric reaction occurred around the core material was characterized by FTIR spectroscopy analysis. The polarized optical microscopy, scanning electron microscopy and particle size distribution investigations showed that the most of the prepared capsules had almost spherical shape with non-unimodal size distribution in micro-nano range. The differential scanning calorimetry analysis results exhibited that the capsules including highest amount of the eutectic PCM had a melting temperature of about 21°C and a latent heat capacity of about 98 J/g. The high thermal durability of the prepared capsules was confirmed by thermogravimetric analysis. The thermal cycling test designated that the synthesized capsules had good long-term usage latent heat thermal energy storage (LHTES) performance and chemical stability. Furthermore; the fabricated capsules with (1: 2) shell/core ratio had a reasonable thermal conductivity. It can be drawn a conclusion from all results that the prepared capsules especially PMMA/(C28–C17) (1: 2) product is a hopeful PCM that can be evaluated for low-temperature LHTES applications.  相似文献   

13.
Biomass has received considerable attention because it is renewable and offers the prospect of circulation of carbon in the ecological system. The concept “Biorefinery” has been developed rapidly in order to establish sustainable industries. Recently, new types of epoxy resins with polyester chains, which can be derived from saccharides, lignin and glycerol, have been investigated. In the above studies, the relationship between chemical structure and physical properties was investigated. In the present review, the features of the preparation system and the action of biomass components in epoxy resin polymer networks are described. The glass transition temperatures of the epoxy resins increased with increasing content of biomass components in epoxy resin polymer networks. Thermal decomposition temperatures were almost constant regardless of the content of biomass components contents in epoxy resins. Mass residue at 500 °C increased with increasing contents of biomass components in epoxy resins. It was found that the thermal properties can be controlled by changing the contents of biomass components.  相似文献   

14.
《中国化学会会志》2017,64(9):1035-1040
Here we report the effect of microwave treatment on a silica–carbon (SiO2 /C) filler derived from rice husk and the function of the microwave‐treated filler in an epoxy matrix for electronic packaging applications. Thermogravimetric analysis revealed improved thermal stability of the SiO2 /C filler upon microwave treatment. X‐ray diffraction analysis indicated partial SiC formation after the microwave treatment. For packaging applications, compared to that of the pure epoxy polymer, the thermal conductivity of the epoxy–SiO2 /C composite was improved by 178% at 40 wt % content of the microwave‐treated SiO2 /C filler. Furthermore, an improvement of 149% in storage modulus and 17.6°C in glass transition temperature of the epoxy–SiO2 /C composites was realized. The improvement in thermal stability of SiO2 /C filler could be achieved via a simple microwave treatment, which in turn enhanced the thermal stability, thermal conduction, and thermomechanical strength of the electronic packaging materials.  相似文献   

15.
A series of crosslinked polyurethane acrylate solids with glass transition temperatures ranging from –49 to +65 °C was prepared by photopolymerization of specially formulated solvent-free resins. The kinetics of thermooxidative and thermal (in N2) degradation of these crosslinked acrylate networks at temperatures ranging from 100 to 400 °C was studied as a function of crosslink density using thermogravimetry. The polyacrylate network degradation rate decreased with the increase of crosslink density, while apparent activation energy of degradation increased. Polyacrylate thermal stability increase with crosslinking was explained by decreased rate of oxygen and volatile products diffusion and/or slowing of depolymerization due to increased radical recombination rate, and decreased chain segments mobility in systems with higher crosslink density.  相似文献   

16.
In the study, the conductive graphite flakes filled poly(urethane-imide) composites (PUI/GFs) with high performance were constructed by the thermal imidization self-foaming reaction. It was found that the foaming action could promote the redistribution of GFs during curing process and the formation of stable linear conductive pathways. The percolation threshold of PUI/GFs composites was lowered from 1.26 wt% (2000 mesh GFs) or 0.86 wt% (1000 mesh GFs) to 0.79 wt% (500 mesh GFs), which were relatively low percolation thresholds for polymer/GFs composites so far. When the content of 500 mesh GFs was 4.0 wt%, the electrical conductivity of the composite was as high as 3.96 × 10?1 S/m. Also, a poly(urethane-imide) (PUI) matrix with excellent thermal stability (Td10%: 334.97 °C) and mechanical properties (elongation at break: 324.52%, tensile strength: 15.88 MPa) was obtained by introducing the rigid aromatic heterocycle into the polyurethane (PU) hard segments. Moreover, the zero temperature coefficient of resistivity for the composites was observed at the temperature range from 30 °C to 200 °C. Consequently, PUI/GFs composites may provide the novel strategy for considerable conductive materials with high thermal stability in electrical conductivity.  相似文献   

17.
《中国化学》2017,35(7):1079-1085
A series of form‐stable phase change materials (FSPCMs ) comprising paraffin as the latent heat storage material, diurea as the supporting material and base oil as the performance improvement agent were prepared. The diurea was synthesized in the system of paraffin/oil directly. A series of characterization was carried out for a deep understanding of shape stability and material properties of diurea‐FSPCMs . The results showed that paraffin and base oil were packaged in the three‐dimensional supra‐molecular structures network which was formed by diurea. The dropping point of the prepared FSPCMs could reach 256 °C and the oil separation rate was as low as 1.19% at 100 °C for 30 h. The results of thermal properties tests showed that the prepared FSPCMs exhibited excellent thermal stability and the FSPCMs remained solid‐like state in the temperature range from 25 to 200 °C. This study proposes a novel method to prepare high‐temperature non‐flowing FSPCMs composites and methods to detect the thermal stability and shape stability of FSPCMs , which is helpful in understanding the shape stability mechanism and broadening the potential application of FSPCMs .  相似文献   

18.
A series of crossslinked organic and organic/inorganic polymers based on maleimide chemistry have been investigated for second‐order non‐linear optical (NLO) materials with excellent thermal stability and low optical loss. Two reactive chromophores (maleimide‐containing azobenzene dye and alkoxysilane‐containing azobenzene dye) were incorporated into a phosphorus‐containing maleimide polymer, respectively. The selection of the phosphorus‐containing maleimide polymer as the polymeric matrices provides enhanced solubility and thermal stability, and excellent optical quality. Moreover, a full interpenetrating network (IPN) was formed through simultaneous addition reaction of the phosphorus‐containing maleimide, and sol‐gel process of alkoxysilane dye (ASD). Atomic force microscopy (AFM) results indicate that the inorganic networks are distributed uniformly throughout the polymer matrices on a nano‐scale. The silica particle sizes are well under 100 nm. Using in situ contact poling, the r33 coefficients of 2.2–17.0 pm/V have been obtained for the optically clear phosphorus‐containing NLO materials. Excellent temporal stability (100°C) and low optical loss (0.99–1.71 dB/cm; 830 nm) were also obtained for these phosphorus‐containing materials. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
Epoxy resins are important thermosetting resins widely employed in industrial fields. Although the epoxy–imidazole curing system has attracted attention because of its reactivity, solidification of a liquid epoxy resin containing imidazoles proceeds gradually even at room temperature. This makes it difficult to use them for one‐component epoxy resin materials. Though powder‐type latent curing agents have been used for one‐component epoxy resin materials, they are difficult to apply for fabrication of fine industrial products due to their poor miscibility. To overcome this situation and to improve the shelf life of epoxy–imidazole compositions, we have developed a liquid‐type thermal latent curing agent 1 , generating an imidazole with a thermal trigger via a retro‐Michael addition reaction. The latent curing agent 1 has superior miscibility toward epoxy resins; in addition, it was confirmed that the epoxy resin composition has both high reactivity at 150 °C, and long‐term storage stability at room temperature. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2680–2688  相似文献   

20.
《印度化学会志》2021,98(6):100077
Thermogravimetric Analysis (TGA) is concluding expanding applicability in determination of the thermal stability and degradation nature of materials. The present study investigates the thermal degradation behavior and the kinetics of degradation of epoxy mixed with varying percentages of 0, 2.5, 5, and 7.5 ​wt% fly ash. Thermal stability and degradation behavior of fly ash modified epoxy cast were determined by thermogravimetric analysis. The kinetic parameters of the EF composites were calculated by using Coats–Redfern, Broido and Horowitz–Metzger models under best-fit analysis and further proved by linear regression analysis. The kinetics of thermal degradation was calculated from data scanned at a heating rate of 10 ​°C/min. The obtained results reveal that kinetic parameters and thermal behavior of EF composites were improved with the reinforcement of fly ash. The cure kinetics of the varying content of fly ash reinforced epoxy cast were also studied by using a nonisothermal differential scanning calorimetric (DSC) technique at four different heating rates 5 ​°C/min, 10 ​°C/min, 15 ​°C/min and 20 ​°C/min. The curing kinetics of the EF composite was derived from the nonisothermal differential scanning calorimetry (DSC) data with the three Kissinger, Ozawa, and Flynn–Wall–Ozawa models, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号