首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Heptanuclear metal-centered, six-membered, mixed-valent, heterometallic wheels 1-3 of iron, manganese, and indium were prepared in a one-pot reaction from N-benzyldiethanolamine (H2L(1)), cesium carbonate, [PPh4]2[MnCl4], and FeCl3 or InCl3. All three complexes were characterized by the combination of elemental analysis, FAB mass spectroscopy, X-ray diffraction and cyclic voltammetry and in the case of 1 additionally by M?ssbauer spectroscopy. In 1, four Mn(II) ions in the periphery are arranged in pairs alternating with one Fe(III) ion each, with an Fe(III) ion located in the center. In 2, three Mn(II) ions alternate with three In(III) ions, whereas in 3, four In(III) ions are arranged in pairs and alternate with one Mn(II) ion each. In 2 and 3 an Mn(II) ion is encapsulated in the center.  相似文献   

2.
We report the effect of donor-doped perovskite-type BaCeO(3) on the chemical stability in CO(2) and boiling H(2)O and electrical transport properties in various gas atmospheres that include ambient air, N(2), H(2), and wet and dry H(2). Formation of perovskite-like BaCe(1-x)Nb(x)O(3±δ) and BaCe(0.9-x)Zr(x)Nb(0.1)O(3±δ) (x = 0.1; 0.2) was confirmed using powder X-ray diffraction (XRD) and electron diffraction (ED). The lattice constant was found to decrease with increasing Nb in BaCe(1-x)Nb(x)O(3±δ), which is consistent with Shannon's ionic radius trend. Like BaCeO(3), BaCe(1-x)Nb(x)O(3±δ) was found to be chemically unstable in 50% CO(2) at 700 °C, while Zr doping for Ce improves the structural stability of BaCe(1-x)Nb(x)O(3±δ). AC impedance spectroscopy was used to estimate electrical conductivity, and it was found to vary with the atmospheric conditions and showed mixed ionic and electronic conduction in H(2)-containing atmosphere. Arrhenius-like behavior was observed for BaCe(0.9-x)Zr(x)Nb(0.1)O(3±δ) at 400-700 °C, while Zr-free BaCe(1-x)Nb(x)O(3±δ) exhibits non-Arrhenius behavior at the same temperature range. Among the perovskite-type oxides investigated in the present work, BaCe(0.8)Zr(0.1)Nb(0.1)O(3±δ) showed the highest bulk electrical conductivity of 1.3 × 10(-3) S cm(-1) in wet H(2) at 500 °C, which is comparable to CO(2) and H(2)O unstable high-temperature Y-doped BaCeO(3) proton conductors.  相似文献   

3.
The mononuclear iron(III) complexes [Fe(LH2)(H2O)Cl](ClO4)2.2H2O (1) and [Fe(LH2)(H2O)2](ClO4)3.H2O (2) have been prepared by reacting [Pb(LH(2))](ClO4)2 with FeCl3.6H2O and Fe(ClO(4))(3).6H(2)O, respectively. Complex 2 upon treatment with 1 equiv of alkali produces the oxo-bridged dimer [{Fe(LH2)(H2O)}2(mu-O)](ClO4)4.2H2O (3). In these compounds, LH2 refers to the tetraiminodiphenol macrocycle in the zwitterionic form whose two uncoordinated imine nitrogens are protonated and hydrogen-bonded to the metal-bound phenolate oxygens. The aqua ligands of complexes 1-3 get exchanged in acetonitrile. Reaction equilibria involving binding and exchange of the terminal ligands (Cl-/H2O/CH3CN) in these complexes have been studied spectrophotometrically. The equilibrium constant for the aquation reaction (K(aq)) [1]2+ + H2O <==> [2]3+ + Cl- in acetonitrile is 8.65(5) M, and the binding constant (K(Cl)-) for the reaction [1]2+ + Cl- [1Cl]+ + CH3CN is 4.75(5) M. The pK(D) value for the dimerization reaction 2[2]3+ + 2OH- <==> [3]4+ + 3H(2)O in 1:1 acetonitrile-water is 9.38(10). Complexes 1-3 upon reaction with Zn(ClO4)(2).6H(2)O and sodium acetate (OAc), pivalate (OPiv), or bis(4-nitrophenyl)phosphate (BNPP) produce the heterobimetallic complexes [{FeLZn(mu-X)}2(mu-O)](ClO4)2, where X = OAc (4), OPiv (5), and BNPP (6). The pseudo-first-order rate constant (k(obs)) for the formation of 4 at 25 degrees C from either 1 or 3 with an excess of Zn(OAc)2.2H2O in 1:1 acetonitrile-water at pH 6.6 is found to be the same with k(obs) = 1.6(2) x 10(-4) s(-1). The X-ray crystal structures of 3, 4, and 6 have been determined, although the structure determination of 3 was severely affected because of heavy disordering. In 3, the Fe-O-Fe angle is 168.6(6) degrees, while it is exactly 180.0 degrees in 4 and 6. Cyclic and square-wave voltammetric (CV and SWV) measurements have been carried out for complexes 1-4 in acetonitrile. The variation of the solvent composition (acetonitrile-water) has a profound effect on the E(1/2) and DeltaE(p) values. The binding of an additional chloride ion to an iron(III) center in 1-3 is accompanied by a remarkable shift of E(1/2) to more negative values. The observation of quasi-reversible CV for complexes containing a Fe(III)-O-Fe(III) unit (3 and 4) indicates that in the electrochemical time scale unusual Fe(III)-O-Fe(II) is produced. The 1H NMR spectra of complexes 3-6 exhibit hyperfine-shifted signals in the range 0-90 ppm with similar features. The metal-hydrogen distances obtained from T(1) measurements are in good agreement with the crystallographic data. Variable-temperature (2-300 K) magnetic susceptibility measurements carried out for 3 and 4 indicate strong antiferromagnetic exchange interaction (H = -2JS1.S2) between the high-spin iron(III) centers in the Fe-O-Fe unit with J = -114 cm(-1) (3) and -107 cm(-1) (4).  相似文献   

4.
Fully relativistic (four-component) density-functional theory calculations were performed for intermetallic dimers MM', where M=Ge, Sn, Pb, and element 114, and MM'=group 10 elements (Ni, Pd, and Pt) and group 11 elements (Cu, Ag, and Au). PbM and 114M, where M are group 14 elements, were also considered. The results have shown that trends in spectroscopic properties-atomization energies D(e), vibrational frequencies omega(e), and bond lengths R(e), as a function of MM', are similar for compounds of Ge, Sn, Pb, and element 114, except for D(e) of PbNi and 114Ni. They were shown to be determined by trends in the energies and space distribution of the valence ns(MM')atomic orbitals (AOs). According to the results, element 114 should form the weakest bonding with Ni and Ag, while the strongest with Pt due to the largest involvement of the 5d(Pt) AOs. In turn, trends in the spectroscopic properties of MM' as a function of M were shown to be determined by the behavior of the np(1/2)(M) AOs. Overall, D(e) of the element 114 dimers are about 1 eV smaller and R(e) are about 0.2 a.u. larger than those of the corresponding Pb compounds. Such a decrease in bonding of the element 114 dimers is caused by the large SO splitting of the 7p orbitals and a decreasing contribution of the relativistically stabilized 7p(1/2)(114) AO. On the basis of the calculated D(e) for the dimers, adsorption enthalpies of element 114 on the corresponding metal surfaces were estimated: They were shown to be about 100-150 kJ/mol smaller than those of Pb.  相似文献   

5.
A series of bithiophene derivatives that are either symmetrically disubstituted with two Ph(2)(X)P groups (X = O, S, Se) or monosubstituted with one Ph(2)(X)P group (X = O, S, Se) and an organic functional group (H, CHO, CH(2)OH, CO(2)Me) have been synthesized. The X-ray crystal structures of Ph(2)(Se)P(C(4)H(2)S)(2)P(Se)Ph(2), Ph(2)(O)P(C(4)H(2)S)(2)H, Ph(2)(S)P(C(4)H(2)S)(2)H, and Ph(2)(O)P(C(4)H(2)S)(2)CH(2)OH exhibit very different solid-state structures depending on the type of intermolecular π-π interactions that occur. The compounds have been characterized by electronic absorption and fluorescence studies. Of particular interest is that the quantum yields of Ph(2)(O)P(C(4)H(2)S)(2)H, Ph(2)(O)P(C(4)H(2)S)(2)P(O)Ph(2), Ph(2)(O)P(C(4)H(2)S)(2)CO(2)Me, and Ph(2)(O)P(C(4)H(2)S)(2)CH(2)OH are significantly larger than that of bithiophene (factors of 13, 14, 14, and 22, respectively). This behavior is quite different from that of analogously substituted terthiophenes in which substitution results in only modest increases in the quantum yields over that of terthiophene (factors of 0.94, 2.7, 1.3, and 1.5, respectively). DFT studies of the emission process suggest that modifying the Ph(2)(X)P group affects both the fluorescence and nonradiative rate constants while modifications of the organic substituents primarily affect the nonradiative rate constants. The higher quantum yields of the substituted bithiophenes make them promising for application in organic light-emitting devices (OLED). The optical power limiting (OPL) performances of these Ph(2)(X)P-substituted bithiophenes were evaluated by nonlinear transmission measurements in the violet-blue spectral region (430-480 nm) with picosecond laser pulses. The OPL performances are enhanced by heavier X groups and when by higher solubilities. Saturated chloroform solutions of Ph(2)(O)P(C(4)H(2)S)(2)H and Ph(2)(S)P(C(4)H(2)S)(2)H exhibit significantly stronger nonlinear absorption than any previously reported compounds and are promising candidates for use in broadband optical power limiters.  相似文献   

6.
Sang R  Xu L 《Inorganic chemistry》2005,44(10):3731-3737
Reaction of ZnCl(2) and Me(2)biim (Me(2)biim = N,N'-dimethyl-2,2-'-biimidazole) in acidic or neutral aqueous solutions gave the noncoordinated ZnCl(4).H(2)Me(2)biim (1) or the double Me(2)biim bridged [Zn(2)Cl(4)(mu-Me(2)biim)(2)] (2). Use of CdX(2) (X = Cl, Br, I) instead of ZnCl(2) yielded the single Me(2)biim bridged one-dimensional coordination polymer [CdX(2)(mu-Me(2)biim)](n) (X = Cl, 3; Br, 4; I, 5). The stacking of the infinite chains are dominated by C-H...X interactions in 3 and 4 but by I...I interactions in 5, responsible for their different crystal structures. Use of Zn(NO(3))(2) instead of ZnCl(2) produced the novel triple Me(2)biim-bridged [Zn(2)(mu-Me(2)biim)(3)(H(2)O)(2)](NO(3))(4).H(2)O (6). The unprecedented hexa-Me(2)bim bridged trinuclear [Cd(3)(mu-Me(2)biim)(8)](2)(ClO(4))(12)(H(2)O)(6) (7) was obtained by using Cd(CH(3)CO(2))(2) in the presence of NaClO(4). Compounds 1-7 were characterized by X-ray crystallography and IR. Examination of photophysical properties of 1-7 indicates that the fluorescence emission of Me(2)biim has been effectively enhanced, quenched, or shifted in its metal complexes 1-7.  相似文献   

7.
The 437 classical isomers of fullerene C52 have been studied by PM3, HCTH/3-21G, and B3LYP6-31G(d). C(2):029 with the least number of adjacent pentagons is predicted to be the most stable isomer. The investigations show that both the number of adjacent pentagons and the degree of aromaticity play important roles in the relative stabilities of fullerene isomers. To clarify the relative stabilities of the C52 isomers in a wide range of temperatures, the entropy contributions are taken into account on the basis of the Gibbs energy at the B3LYP6-31G(d) level. C(2):029 prevails in a wide temperature range. In addition, the electronic spectra and second-order hyperpolarizabilities are determined by means of ZINDO and sum-over-states model. The static second-order hyperpolarizability of C(2):029 is 51% larger than that of C60. Furthermore, intensity-dependent refractive index gamma (-omega;omega,omega,-omega) (omega=1.1653 eV) of C(2):029 is 13 times larger than that of C60. The encapsulation of Ca atom in C52 fullerene is exothermic and the metallofullerene Ca-C52 is described as Ca2+-C52(2-).  相似文献   

8.
The species Cy(2)PHC(6)F(4)BF(C(6)F(5))(2) reacts with Pt(PPh(3))(4) to yield the new product cis-(PPh(3))(2)PtH(Cy(2)PC(6)F(4)BF(C(6)F(5))(2)) 1 via oxidative addition of the P-H bond of the phosphonium borate to Pt(0). The corresponding reaction with Pd(PPh(3))(4) affords the Pd analogue of 1, namely, cis-(PPh(3))(2)PdH(Cy(2)PC(6)F(4)BF(C(6)F(5))(2)) 3; while modification of the phosphonium borate gave the salt [(PPh(3))(3)PtH][(tBu(2)PC(6)F(4)BF(C(6)F(5))(2))] 2. Alternatively initial deprotonation of the phosphonium borate gave [tBu(3)PH][Cy(2)PC(6)F(4)BF(C(6)F(5))(2)] 4, [SIMesH][Cy(2)PC(6)F(4)BF(C(6)F(5))(2)] 5 which reacted with NiCl(2)(DME) yielding [BaseH](2)[trans-Cl(2)Ni(Cy(2)PC(6)F(4)BF(C(6)F(5))(2))(2)] (Base = tBu(3)P 6, SIMes 7) or with PdCl(2)(PhCN)(2) to give [BaseH](2)[trans-Cl(2)Pd(Cy(2)PC(6)F(4)BF(C(6)F(5))(2))(2)] (Base = tBu(3)P 8, SIMes 9). While [C(10)H(6)N(2)(Me)(4)H][tBu(2)PC(6)F(4)BF(C(6)F(5))(2)] 10 was also prepared. A third strategy for formation of a metal complex of anionic phosphine-borate derivatives was demonstrated in the reaction of (COD)PtMe(2) with the neutral phosphine-borane Mes(2)PC(6)F(4)B(C(6)F(5))(2) affording (COD)PtMe(Mes(2)PC(6)F(4)BMe(C(6)F(5))(2)) 11. Extension of this reactivity to tBu(2)PH(CH(2))(4)OB(C(6)F(5))(3)) was demonstrated in the reaction with Pt(PPh(3))(4) which yielded cis-(PPh(3))(2)PtH(tBu(2)P(CH(2))(4)OB(C(6)F(5))(3)) 12, while the reaction of [SIMesH][tBu(2)P(CH(2))(4)OB(C(6)F(5))(3)] 13 with NiCl(2)(DME) and PdCl(2)(PhCN)(2) afforded the complexes [SIMesH](2)[trans-Cl(2)Ni(tBu(2)PC(4)H(8)OB(C(6)F(5))(3))(2)] 14 and [SIMesH](2)[trans-PdCl(2)(tBu(2)P(CH(2))(4)OB(C(6)F(5))(3))(2)] 15, respectively, analogous to those prepared with 4 and 5. Finally, the reaction of 7 and 13with [(p-cymene)RuCl(2)](2) proceeds to give the new orange products [SIMesH][(p-cymene)RuCl(2)(Cy(2)PC(6)F(4)BF(C(6)F(5))(2))] 16 and [SIMesH][(p-cymene)RuCl(2)(tBu(2)P(CH(2))(4)OB(C(6)F(5))(3))] 17, respectively. Crystal structures of 1, 6, 10, 11, 12, and 16 are reported.  相似文献   

9.
A series of organometallic compounds of group 13 metals supported by the sterically encumbered beta-diketiminate ligand containing hydrides, fluorides, chlorides, and bromide have been synthesized and structurally characterized. The synthetic strategy applied utilizes halide metathesis and reduction of metal chlorides to the corresponding hydrides. Thus, the reaction of LLi.OEt2 with MeMCl2 affords LM(Me)Cl (M = Al (1), Ga (2), In (3)) and LGaBr2 (4) with GaBr3. Reduction of LGa(Me)Cl with LiH.BEt3 leads to the formation of LGa(Me)H (10). Synthesis of LGaH(2) (12) has been accomplished by reacting LGaI2 (8) with LiH.BEt3. LAl(Me)Cl (1) and LAlH2 (6) have been converted to LAl(Me)F (5) and LAlF2 (7), respectively. The former was obtained in a reaction of LAl(Me)Cl with Me3SnF while the latter was isolated in a reaction of LAlH2 with BF3.OEt2. Similarly reaction of LGaI2 (8) with Me3SnF affords LGaF2 (9). Compounds reported herein have been characterized by elemental analyses, IR, NMR, EI-MS, and single-crystal X-ray diffraction techniques.  相似文献   

10.
Reactions of C(6)H(5)Li and 4-CH(3)C(6)H(4)Li with halides of Ti, Ir, Hf, and Nb lead to the formation of homoleptic organometallic anions of these metals. Owing to their thermal instability and their sensitivity towards H(2) O and O(2) , these compounds are characterized by single-crystal structure determinations at low temperature, whereas other physical data could only be obtained occasionally. Three pentacoordinate complex anions [Ti(C(6)H(5))(5)](-), [Ti(4-CH(3)C(6)H(4))(5)](-), and [Zr(C(6)H(5))(5)](-) have square-pyramidal structures that display only slight deviations from the ideal geometry, in contrast to the already known structures of [Ti(CH(5))(5)](-). The hexacoordinate complex anions [Zr(C(6)H(5))(6)](2-), [Zr(4-CH(3)C(6)H(4))(6)](2-), [Nb(C(6)H(5))(6)](2-), and [Nb(4-CH(3)C(6)H(4))(6)](2-) all have trigonal-prismatic structures, in accord with the known hexamethyl complex dianions. In contrast, the hexacoordinate complex anion [Hf(C(6)H(5))(6)](2)(-) has an octahedral or close to octahedral structure, in contrast to the known trigonal-prismatic structures of [Ta(C(6)H(5))(6)](-) and [Ta(4-CH(3)C(6)H(4))(6) (-). A qualitative explanation for this structural variability is given.  相似文献   

11.
One-electron reduction of [ArN(3)N]MoCl complexes (Ar = C(6)H(5), 4-FC(6)H(4), 4-t-BuC(6)H(4), 3,5-Me(2)C(6)H(3)) yields complexes of the type [ArN(3)N]Mo-N=N-Mo[ArN(3)N], while two-electron reduction yields ([ArN(3)N]Mo-N=N)(-) derivatives (Ar = C(6)H(5), 4-FC(6)H(4), 4-t-BuC(6)H(4), 3,5-Me(2)C(6)H(3), 3,5-Ph(2)C(6)H(3), and 3,5-(4-t-BuC(6)H(4))(2)C(6)H(3)). Compounds that were crystallographically characterized include ([t-BuC(6)H(4)N(3)N]Mo)(2)(N(2)), Na(THF)(6)([PhN(3)N]Mo-N=N)(2)Na(THF)(3), [t-BuC(6)H(4)N(3)N]Mo-N=N-Na(15-crown-5), and ([Ph(2)C(6)H(3)N(3)N]MoNN)(2)Mg(DME)(2). Compounds of the type [ArN(3)N]Mo-N=N-Mo[ArN(3)N] do not appear to form when Ar = 3,5-Ph(2)C(6)H(3) or 3,5-(4-t-BuC(6)H(4))(2)C(6)H(3), presumably for steric reasons. Treatment of diazenido complexes (e.g., [ArN(3)N]Mo-N=N-Na(THF)(x)) with electrophiles such as Me(3)SiCl or MeOTf yielded [ArN(3)N]Mo-N=NR complexes (R = SiMe(3) or Me). These species react further to yield ([ArN(3)N]Mo-N=NMe(2))(+) species in the presence of methylating agents. Addition of anionic methyl reagents to ([ArN(3)N]Mo-N=NMe(2))(+) species yielded [ArN(3)N]Mo(N=NMe(2))(Me) complexes. Reduction of [4-t-BuC(6)H(4)N(3)N]WCl under dinitrogen leads to a rare ([t-BuC(6)H(4)N(3)N]W)(2)(N(2)) species that can be oxidized by two electrons to give a stable dication (as its BPh(4)(-) salt). Reduction of hydrazido species leads to formation of Mo=N in low yields, and only dimethylamine could be identified among the many products. Electrochemical studies revealed expected trends in oxidation and reduction potentials, but also provided evidence for stable neutral dinitrogen complexes of the type [ArN(3)N]Mo(N(2)) when Ar is a relatively bulky terphenyl substituent.  相似文献   

12.
Isocyanates and isothiocyanates of the type RX-NCY (X and Y = O or S) and the isomeric nitrile oxides and nitrile sulfides RY-CNX are highly reactive compounds. A number of potential 1,4-shifts of substituent groups of the type R-Y-CNX → R-X-N═C═Y, 1,3-shifts R-C(═Y)-N═X → R-X-N═C═Y, and 1,2-shifts R-C(═Y)-N═X → R-Y-CNX have been evaluated computationally. The results obtained for the relatively new functional MPW1K and the well-established B3LYP, together with a triple-ζ quality basis set, are very similar. The 1,3- and 1,4-halogen shifts in the title compounds are usually highly exothermic and possess low activation barriers. 1,3-Aryl shifts are feasible for for 5e → 6e (Ar-CO-NSO(2) → Ar-SO(2)-NCO) with activation barriers of less than 40 kcal/mol. Additionally, several 1,3- and 1,4-hydrogen shifts and the 1,4-methyl-shift in methoxynitrile sulfide MeO-CNS to methylsulfenyl isocyanate MeS-NCO (4c → 6c) are potentially feasible. The 1,2-shift reactions 4b → 5b (HO-NCS → H-CS-NO) and 4c → 5c (Ar-O-CNS→ Ar-CO-NS) are good candidates for experimental observation with activation energies around 30 kcal/mol.  相似文献   

13.
Thermolysis of [Ru3(CO)9(mu3-NOMe)(mu3-eta2-PhC2Ph)] (1) with two equivalents of [Cp*Co(CO)2] in THF afforded four new clusters, brown [Ru5(CO)8(mu-CO)3(eta5-C5Me5)(mu5-N)(mu4-eta2-PhC2Ph)] (2), green [Ru3Co2(CO)7(mu3-CO)(eta5-C5Me5)2(mu3-NH)[mu4-eta8-C6H4-C(H)C(Ph)]] (3), orange [Ru3(CO)7(mu-eta6-C5Me4CH2)[mu-eta3-PhC2(Ph)C(O)N(OMe)]] (4) and pale yellow [Ru2(CO)6[mu-eta3-PhC2(Ph)C(O)N(OMe)]] (5). Cluster 2 is a pentaruthenium mu5-nitrido complex, in which the five metal atoms are arranged in a novel "spiked" square-planar metal skeleton with a quadruply bridging alkyne ligand. The mu5-nitrido N atom exhibits an unusually low frequency chemical shift in its 15N NMR spectrum. Cluster 3 contains a triangular Ru2Co-imido moiety linked to a ruthenium-cobaltocene through the mu4-eta8-C6H4C(H)C(Ph) ligand. Clusters 4 and 5 are both metallapyrrolidone complexes, in which interaction of diphenylacetylene with CO and the NOMe nitrene moiety were observed. In 4, one methyl group of the Cp* ring is activated and interacts with a ruthenium atom. The "distorted" Ru3Co butterfly nitrido complex [Ru3Co(CO)5(eta5-C5Me5)(mu4-N)(mu3-eta2-PhC2Ph)(mu-I)2I] (6) was isolated from the reaction of 1 with [Cp*Co(CO)I2] heated under reflux in THF, in which a Ru-Ru wing edge is missing. Two bridging and one terminal iodides were found to be placed along the two Ru-Ru wing edges and at a hinge Ru atom, respectively. The redox properties of the selected compounds in this study were investigated by using cyclic voltammetry and controlled potential coulometry. 15N magnetic resonance spectroscopy studies were also performed on these clusters.  相似文献   

14.
An UV-vis, Raman, IR and EPR spectroscopic study was performed for the water soluble complexes of Fe(III), Ni(II), Co(II) and Zn(II) coordinated to dioxolene ligands derived from oxidized dopamine. The complexes were obtained and stabilized at neutral pH by the strong reducing agent sodium thiosulfate. Iron(III) stabilizes the ligand in catecholate form as [Fe(III)(Cat)2]1-, Cat=dopacatecholate, and the divalent metals as dopasemiquinone (SQ): [Ni(SQ)3]1-, [Co(SQ)3]1- and [Zn(SQ)3]1-. The resonance Raman spectra of the solid complexes as [CAT][Ni(SQ)3], [CTA][Co(SQ)3] and [CTA][Zn(SQ)3], CTA is the cetyltrimethylammonium, are very similar to the spectra of the complexes in solution, while the Fe(III) complex is a mixture of two iron complexes, with catecholate or dopasemiquinone ligands.  相似文献   

15.
A series of new quaternary semiconductor materials CsLnCdTe(3) (Ln = La, Pr, Nd, Sm, Gd-Tm, and Lu) was obtained from high-temperature solid-state reactions by the reactive halide flux method. These compounds belong to the layered KZrCuS(3) structure type and crystallize in the orthorhombic space group Cmcm (No. 63). Their structure features two-dimensional infinity(2)[LnCdTe(3)-] layers of edge- and vertex-sharing LnTe(6) octahedra with Cd atoms filling the tetrahedral interstices, which stack along b-axis. The Cs atoms are located between the infinity(2)[LnCdTe(3)-] layers and are surrounded by eight Te atoms to form a CsTe(8) bicapped trigonal prism. Such Te layers are more flexible than the Se analogues in the isostructural CsLnMSe(3) to accommodate nearly the entire Ln series. Theoretical studies performed on CsTmCdTe(3) show that the material is a direct band gap semiconductor and agrees with the result from a single-crystal optical absorption measurement. Magnetic susceptibility measurements show that the CsLnCdTe(3) (Ln = Pr, Nd, Gd, Dy, Tm) materials exhibit temperature-dependent paramagnetism and obey the Curie-Weiss law, whereas CsSmCdTe(3) does not.  相似文献   

16.
Ln(R)3, Ln(R)2(OPri), and Ln(R)(OPri)2 (where Ln = La, Pr, Nd, and Sm; R = deprotonated furfuryl alcohol, RH) were prepared from lanthanide isopropoxide and furfuryl alcohol in 1:3, 1:2 and 1:1 stoichiometric ratios respectively in anhydrous benzene under reflux. Ln(R)2-(OPri) and Ln(R)(OPri)2 were also obtained at room temperature. The isopropoxy group(s) of these derivatives were replaced by tertiary butoxy group(s) during the alcohol exchange reactions with tertiary butanol. All these derivatives are soluble in benzene except the tertiary butoxy derivatives which are only sparingly soluble. However, they become insoluble on standing. These furfuroxides did not distil at ~300°C/102 torr but decomposed. Isopropoxy/butoxy furfuroxides were characterized by the elemental analysis and also by estimating the liberated isopropanol. The i.r. spectra of Ln(R)3 clearly supports the presence of furfuroxide groups in these derivatives.  相似文献   

17.
Theophylline-7-acetic acid (acefylline) ( 3 ) and its derivatives are pharmacologically active compounds and generally recognized as bronchodilators for the treatment of respiratory diseases like acute asthma for over 70 years. In this article, synthesis of 2-((5-((1,3-dimethyl-2,6-dioxo-2,3-dihydro-1H-purin-7(6H)-yl)methyl)-1,3,4-oxadiazol-2-yl)thio)-N-arylacetamides ( 10a-j ) has been reported. All the synthesized derivatives ( 10a-j) were structurally verified by FT-IR, 1H NMR, 13C NMR and evaluated for their anti-cancer (using MTT assay), hemolytic and thrombolytic potential. N-(4-Chlorophenyl)-2-(5-((1,3-dimethyl-2,6-dioxo-2,3-dihydro-1H-purin-7(6H)-yl)methyl)-1,3,4-oxadiazol-2-ylthio)acetamide ( 10g ) was found to be the most active against human liver cancer cell lines (Huh7) having cell viability 53.58 ± 1.28 using 100 μg/mL concentration of compound which was further in-silico modelled to describe the possible mechanistic insights for its anti-proliferative activity. The results of hemolytic and thrombolytic activities indicated that these derivatives were less toxic and hold considerable potential as a drug candidate. 2-(5-((1,3-Dimethyl-2,6-dioxo-2,3-dihydro-1H-purin-7(6H)-yl)methyl)-1,3,4-oxadiazol-2-ylthio)-N-(2-fluorophenyl)acetamide ( 10c ) of the series was found to be least toxic with 0.1% hemolysis relative to ABTS (95.5%) as positive control. 2-(5-((1,3-Dimethyl-2,6-dioxo-2,3-dihydro-1H-purin-7(6H)-yl)methyl)-1,3,4-oxadiazol-2-ylthio)-N-(tetrahydro-2H-pyran-4-yl)acetamide ( 10j ) exhibited potent clot lysis activity (90%) as compared to negative control DMSO (0.57%).  相似文献   

18.
A series of metal complexes of cobalt(II), nickel(II), and copper(II) having the general composition [M(L)2X2] with thioacetamide have been prepared and characterized by elemental chemical analysis, molar conductance, magnetic susceptibility measurements, mass, IR, EPR, and electronic spectral studies. The IR spectral data suggests the involvement of sulfur and amino nitrogen in coordination to central metal ion. On the basis of spectral studies, an octahedral geometry has been assigned for the cobalt(II) and nickel(II) complexes whereas tetragonal geometry for copper(II) complexes. Thioacetamide and its metal complexes have been tested in vitro against a number of microorganisms in order to assess their antimicrobial properties.  相似文献   

19.
Two copper-mercury-chalcogenide clusters [Hg(15)Cu(20)E(25)(PPr(3))(18)] (1, E = S; 2, E = Se) are synthesized in good yield from the reaction of (Pr(3)P)(3)Cu-ESiMe(3) and (Pr(3)P)(2).Hg(OAc)(2) at low temperatures. Single-crystal X-ray analyses illustrate that the two ternary clusters are isomorphous and consist of a phosphine-stabilized core of mixed Hg, Cu, and E centers. Thermolysis of 1 leads to the formation of mercury metal and various forms of copper-sulfide. The copper-indium-sulfide cluster [Cu(6)In(8)S(13)Cl(4)(PEt(3))(12)] (3) is similarly prepared in 50% yield from (Et(3)P)(3)Cu-SSiMe(3), InCl(3), and S(SiMe(3))(2).  相似文献   

20.
The synthesis of half-sandwich transition-metal complexes containing the Cab(N) and Cab(N,S) chelate ligands (HCab(N) = HC2B10H10CH2C5H4N (1), LiCab(N,S) = LiSC2B10H10CH2C5H4N (4)) is described. Compounds 1 and 4 were treated with chloride-bridged dimers [{Ir(Cp*)Cl2}2] (Cp* = eta5-C5Me5), [{Ru(p-cymene)Cl2}2] and [{Rh(Cp*)Cl2}2] to give half-sandwich complexes [Ir(Cp*)Cl(Cab(N))] (2), [Ru(p-cymene)Cl(Cab(N))] (3), and [Rh(Cp*)Cl(Cab(N,S))] (5), respectively. Addition reaction of LiCab(S) (Cab(S) = SC2(H)B10H10) to the rhodium complex 5 yields [Rh(Cp*)(Cab(S))(Cab(N,S))] (6). All the complexes were characterized by IR and NMR spectroscopy, and by elemental analysis. In addition, X-ray structure analyses were performed on complexes 2, 3, 5, and 6, in which the potential C,N- and N,S-chelate ligands were found to coordinate in a bidentate mode. The carborane complex 2 shows catalytic activities up to 3.7x10(5) g PE mol(-1) Ir h(-1) for the polymerization of ethylene in the presence of methylaluminoxane (MAO) as cocatalyst. The polymer obtained from this homogeneous catalytic reaction has a spherical morphology. Catalytic activities and the molecular weight of polyethylene have been investigated for various reaction conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号