首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyurethane (PU) cationomers were synthesized from polytetramethylene adipate glycol (PTAd), isophorone diisocyanate (IPDI), and N-methyl diethanolamine (MDEA) according to a prepolymer mixing process. Basic structure-property behavior of the emulsion (obtained by adding water to the ionomer solution) and emulsion cast film was studied with regard to the molecular weight (Mn) of PTAd, MDEA content, degree of neutralization, and extender functionality. Particle size decreased asymptotically with increasing Mn of PTAd due to the increased chain flexibility, and with the degree of neutralization due to the increased hydrophilicity of the PU. Emulsion viscosity generally showed the opposite tendency with particle size dependence. The major transition temperature, corresponding to the glass transition (Tg) of phase mixed PU or hard segment-rich phase of the PU monotonically increased with MDEA content, degree of neutralization, and with increasing extender functionality. However, with increasing Mn of PTAd, Tg first decreased (Mn = 1000) and then increased (Mn = 1500, 2000), due respectively to the increased hard fraction of phase mixed PU, and soft segment crystallization. Tensile strength increased and elongation at break decreased with MDEA content, degree of neutralization, and extender functionality. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
Linear segmented polyurethanes based on poly(butylene adipate)s (PBA) of different molecular weight (Mn 2000, 1000, and 600), 4,4′-diphenylmethane diisocyanate (MDI) and the mesogenic diol 4,4′-bis-(6-hydroxyhexoxy)biphenyl (BHHBP) as well as the unsegmented polyurethane consisting of MDI/BHHBP units have been synthesized and characterized by elemental analysis, 13C-NMR and SEC. The thermal behavior and the morphology were studied by DSC, polarizing microscopy, and DMA. The properties of the MDI-polyurethanes were discussed in relation to the BHHBP chain extended 2,4-TDI-polyurethanes and common 1,4-butanediol chain-extended MDI products. MDI polyurethanes based on PBA (Mn 2000) exhibit a glass transition temperature Tg of about −40°C independent of the hard segment content up to ∼50% hard segments. At higher hard segment contents increasing Tgs were observed. Polyurethanes, based on the shorter polyester soft segments PBA (Mn 1000 or 600), reveal an increase in the glass transition temperatures with growing hard segment content. The thermal transitions caused by melting of the MDI/BHHBP hard segment domains are found at 50 K higher temperatures in comparison with the analogous TDI products with mesogenic BHHBP/TDI hard segments. Shortening of the PBA chain length causes a shift of the thermal transitions to lower temperatures. Polarizing microscopy experiments indicate that liquid crystalline behavior is influenced by both the content of mesogenic hard segments and the chain length of the polyester. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
Mechanical and dielectric properties of two series of segmented polyurethanes having soft segment concentration of 50 and 70% and a varying degree of crosslinking through the hard segment were studied. The degree of crosslinking in each series was varied by varying the butane diol/trimethylol propane ratio in the chain extender mixture. Tensile strength, elongation at break decrease, but elastic recovery increases monotonically with increasing crosslinking. The plateau modulus in the dynamic mechanical test decreases and then increases with increasing TMP content. Crosslinking causes broadening of the soft segment glass transition as seen by permittivity and loss factor measurements. It also affects high temperature behavior (above the glass transition of the hard segment); it lowers permittivity, loss factor, and ionic conductivity. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 237–251, 1998  相似文献   

4.
The microphase separation (MPS) in polyureas based on methylene diphenyl diisocyanate (MDI) hard segment, diethyltoluenediamine chain extender, and amino-terminated polypropylene glycol soft segment prepared by reaction injection molding (RIM) was studied by advanced solid-state NMR spectroscopy. Incomplete microphase separation leads to the presence of mobilized hard segments dispersed in the soft segment domains as well as immobilized soft segments residing in the hard domains. This is detected by 1H-NMR spectra recorded under spinning at the magic angle (MAS) as well as two-dimensional wide-line separation (WISE) NMR spectra. The sizes of the various domains as well as the interfaces between them are quantified by spin diffusion measurements. In this way the impact of annealing, method of polymerization, and hard segment content on MPS is studied. Whereas annealing at temperatures up to 170°C results in improving the MPS, major changes are observed after annealing at higher temperatures (190°C), where the system changes from “soft-in-hard” to “hard-in-soft” behavior. The MPS decreases with increasing hard segment content. The highest MPS is observed for solution polymerized samples. The various NMR experiments clearly reveal the nonequilibrium nature of RIM systems. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 693–703, 1998  相似文献   

5.
Three series of segmented polyurethanes based on MDI, variable chain extender, and polypropylene oxide of MW=1000, 2000, and 3000 were synthesized and their dielectric behavior examined.Dielectric relaxations in the segmented polyurethanes were investigated between –150°C and +150°C in the 100 Hz to 10 kHz range. In general, three transitions, designated as, , and were observed, and ascribed in accordance with calorimetric relaxations to glass transitions of the hard and soft segments, and Shatzki-type motions, respectively. The effect of structure variables such as soft segment size, type of chain extender (ethylene glycol, butane diol, and hexane diol) and soft segment concentration, as well as the effect of interaction of the phases on dielectric properties was discussed. It was found that a certain degree of phase mixing exists in all series, detected by the variation of theT g of the soft segment with soft segment concentration, contrary to DSC results, which was ascribed to thermal treatment prior to the dielectric measurements. It appears that interfacial polarization becomes important only above the transition temperature.  相似文献   

6.
Two series of segmented poly(ester‐urethane)s were synthesized from bacterial poly[(R)‐3‐hydroxybutyrate]‐diol (PHB‐diol), as hard segments, and either poly(ε‐caprolactone)‐diol (PCL‐diol) or poly(butylene adipate)‐diol (PBA‐diol), as soft segments, using 1,6‐hexamethylene diisocyanate as a chain extender. The hard‐segment content varied from 0 to 50 wt.‐%. These materials were characterized using 1H NMR spectroscopy and GPC. The polymers obtained were investigated calorimetrically and dielectrically. DSC showed that the Tg of either the PCL or PBA soft segments are shifted to higher temperatures with increasing PHB hard‐segment content, revealing that either the PCL or PBA are mixed with small amounts of PHB in the amorphous domains. The results also showed that the crystallization of soft or hard segments was physically constrained by the microstructure of the other crystalline phase, which results in a decrease in the degree of crystallinity of either the soft or hard segments upon increase of the other component. The dielectric spectra of poly(ester‐urethane)s, based on PCL and PHB, showed two primary relaxation processes, designated as αS and αH, which correspond to glass–rubber transitions of PCL soft and PHB hard segments, respectively. Whereas in the case of other poly(ester‐urethane)s, derived from PBA and PHB, only one relaxation process was observed, which broadens and shifts to higher temperature with increasing PHB hard‐segment content. It was concluded from these results that our investigated materials exhibit micro‐phase separation of the hard and soft segments in the amorphous domains.  相似文献   

7.
The effects of the dynamic polymerization method and temperature on the molecular aggregation structure and the mechanical and melting properties of thermoplastic polyurethanes (TPUs) were successfully clarified. TPUs were prepared from poly (ethylene adipate) glycol (Mn = 2074), 4,4′‐diphenylmethane diisocyanate and 1,4‐butanediol by the one‐shot (OS) and the prepolymer (PP) methods in bulk at dynamic polymerization temperatures ranging from 140 to 230 °C. Glass‐transition temperatures (Tgs) of the soft segment and melting points (Tms) of the hard segment domains of OS‐TPUs increased and decreased, respectively, with increasing polymerization temperatures, but those of PP‐TPUs were almost independent of the polymerization temperature. Tgs of the soft segment and Tms of the hard segment domains of these TPUs polymerized above 190 °C were almost the same regardless of the polymerization method. Solid‐state nuclear magnetic resonance spectroscopy (NMR) analyses of OS‐ and PP‐TPUs showed that the relative proton content of fast decay components, which corresponds to the hard segment domains, in these TPUs decreased with increasing polymerization temperatures. These results clearly show that the degree of microphase separation becomes weaker with increasing polymerization temperatures. The temperature dependence of dynamic storage modulus and loss tangent of OS‐TPUs coincided with those of PP‐TPUs at polymerization temperature above 190 °C. The apparent shear viscosity for OS‐ and PP‐TPUs polymerized above 190 °C approached a Newtonian behavior at low shear rates regardless of the polymerization method. These results indicate that TPUs polymerized at higher temperatures form almost the same molecular aggregation structures irrespective of the dynamic polymerization method. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 800–814, 2007  相似文献   

8.
A series of polyester urethanes (PEUs) comprising poly(lactic acid‐co‐polydiol) copolymers as a soft segment, 4,4′‐diphenylmethane diisocyanate (MDI) and 1,4‐butanediol (BDO) as a hard segment were systematically synthesized. Soft segments, which were block copolymers of L ‐lactide (LA) and polydiols such as poly(ethylene glycol) and poly(trimethylene ether glycol), were prepared via ring opening polymerization. Glass transition temperatures (Tg) of the obtained PEUs were found strongly dependent on properties of copolymer soft segments. By simply changing composition ratio, type and molecular weight of polydiols in the soft segment preparation step, Tg of PEU can be varied in the broad range of 0–57°C. The synthesized PEUs exhibited shape memory behavior at their transition temperatures. PEUs with hard segment ratio higher than 65 mole percent showed good shape recovery. These findings suggested that it is important to manipulate molecular structure of the copolymer soft segment for a desirable transition temperature and design optimal soft to hard segment ratio in PEU for good shape recovery. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Dielectric relaxation in three segmented polyurethane-CaCO3 composites was investigated between ?70°C and +150°C in the 300 Hz to 100 kHz frequency range. Two of the polymers contained a polyacetal-polyether soft segment, whereas the soft component of the third polymer was polypropylene oxide. The hard segments consisted of 4,4′-diphenyl methane diisocyanate in two cases and toluene-2,4-diisocyanate in the third case. In parallel studies two calorimetric relaxations, designated α and α′, were observed for each sample and were determined to be glass transitions of the soft and hard segments, respectively. In general, the transition temperatures decrease with increasing filler content. High frequency, low temperature permittivities increase while low frequency, high temperature AC conductivities generally decrease with increasing filler content. The shift in the transition temperatures can be explained using the adsorption theory of filler-polymer interactions and the densities of the samples. The interfacial polarization mechanism becomes important only above the α′ transition temperature and below 1 kHz.  相似文献   

10.
Hydroxyl‐terminated poly(butadiene) (HTPB; Mn = 2100 g mol−1) was capped with 30 and 60 wt % of ɛ‐caprolactone to reach amphiphilic triblock copolymers in form of capped poly(butadiene) CPB. The former (CPB30; Mn = 3300 g/mol) is amorphous with a glass temperature of −56 °C. CPB60 (Mn = 4000 g mol−1) is semi‐crystalline with a melting point of 50 °C and a glass transition at −47 °C. The CPBs, HTPB and polycaprolactone diol (Mn = 2000 g mol−1) were used as soft segment components in the preparation of polyurethane elastomers (PUE), using a 1/1 mixture of an MDI prepolymer and uretonimine modified MDI, and hard phase components in form of 1,3‐propane diol, 1,4‐butane diol, and 1,5‐pentane diol. CPB‐based elastomers with 1,4 butane diol (8 wt %) show hard domains as fringed aggregates with a better connection to the continuous phase than the HTPB‐based PUE. The soft segment glass transition temperature (Tg) is at −28 °C for HTPB‐based PUE and at −43 °C for those of CPB. The tensile strength of the CPB30&60‐based PUE is found between 20 and 30 MPa at an elongation at break of 400% and 550%, respectively. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1162–1172  相似文献   

11.
Syntheses of segmented copoly(ether-ester)s with (oxy-2-methyl-1,4-phenyleneoxycarbonyl-1,4-phenylene carbonyl)/(oxy-2-chloro-1,4-phenyleneoxycarbonyl-1,4-phenylene carbonyl) (methyl-/chloro-substituted) hard segments and poly(oxytetramethylene) soft segments, are reported. The methodology consisted of staged addition melt condensation of terephthaloyl chloride, poly(oxytetramethylene)glycol (POTMG; \[ \bar M_n \] = 250, 650, 1000, 2000) and methyl-/chloro-hydroquinone. Lengths of hard and soft segments were varied while the weight ratio of hard to soft segment was maintained constant. Copolymers were characterised for solubility behavior, and by infrared spectroscopy, x-ray diffraction, DSC, and polarizing microscopy. Thermal properties were found to be dependent on length of soft segment as well as on the type of substituent in the mesogenic core. In both methyl- as well as chloro-substituted copoly(ether-ester)s soft segment glass transition temperature (Tgs) was obtained between ?40 and ?50°C. All copoly(ether-ester)s are elastomeric at room temperature (25°C). These polymers exhibit thermotropic liquid crystalline behavior and were easily sheared and aligned in liquid crystalline state. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
Effect on shape memory and mechanical properties of polyurethane (PU) copolymers by changing the chain extender from 1,4-butanediol (BD) to ethylenediamine (ED) was investigated. PU copolymers composed of the different ratio of hard and soft segment were prepared and characterized by IR, DSC, XRD, and UTM. Glass transition temperature of PU increased to room temperature range by adopting ED as a chain extender. The XRD peak pattern changed with hard segment content. ED type PU achieved the high mechanical properties at lower hard segment content than BD type PU. Especially, strain at break of ED type significantly improved compared to BD type. Shape recovery rates were similar for both types of PU, but ED type showed better shape retention rate than BD type. The reason for the differences between two types of PU is discussed in this paper.  相似文献   

13.
A series of waterborne hyperbranched polyurethane acrylate (WHUAs) ionomers used for ultraviolet curable waterborne coatings were synthesized. The average particle size of aqueous dispersion ranged between 48.2 and 75.3 nm at 0.05% concentration determined by laser light scattering. The effects of end group of WHUAs on rheological properties were investigated. WHUAs have much lower viscosity than EB2002, commercial linear waterborne polyurethane acrylate. Moreover, the glass transition temperature (Tg) evaluated by differential scanning calorimetry of samples showed that the influence of end capping by hard segment consisting of toluene diisocyanate–hydroxyethyl acrylate is significant due to the increase of crosslink density. All cured WHUA have higher glass transition temperatures than those of cured EB2002. The results of thermogravimetric analysis for cured WHUA films indicated good thermal stability with no appreciable weight loss until 200°C, and that an increase in the hard segment content provoked the increases in thermal degradation temperature. The activation energies were calculated by Flynn–Wall method to be 91.3, 114.3, and 139.7 kJ mol−1 for cured WHUA62, WHUA44, and WHUA26, with the individual ratios of 6:2, 4:4, and 2:6 for salt-like group to double bond at the terminals, compared with 81.1 kJ mol−1 of EB2002 in N2 atmosphere, respectively.  相似文献   

14.
A series of poly(dimethylsiloxane‐urethane) elastomers based on hexamethylenediisocyanate, toluenediisocyanate, or 4,4′‐methylenediphenyldiisocyanate hard segment and polydimethylsiloxane (PDMS) soft segment were synthesized. In this study, a new type of soft‐segmented PDMS crosslinker was synthesized by hydrosilylation reaction of 2‐allyloxyethanol with polyhydromethylsiloxane, using Karstedt's catalyst. The synthesized soft‐segmented crosslinker was characterized by FT‐IR, 1H, and 13C NMR spectroscopic techniques. The mechanical and thermal properties of elastomers were characterized using tensile testing, thermogravimetric analysis, differential scanning calorimetry (DSC), and dynamical mechanical analysis measurements. The molecular structure of poly(dimethylsiloxane‐urethane) membranes was characterized by ATR‐FTIR spectroscopic techniques. Infrared spectra indicated the formation of urethane/urea aggregates and hydrogen bonding between the hard and soft domains. Better mechanical and thermal properties of the elastomers were observed. The restriction of chain mobility has been shown by the formation of hydrogen bonding in the soft and hard segment domains, resulting in the increase in the glass‐transition temperature of soft segments. DSC analysis indicates the phase separation of the hard and soft domains. The storage modulus (E′) of the elastomers was increasing with increase in the number of urethane connections between the hard and soft segments. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2980–2989, 2006  相似文献   

15.
In this work thermal transitions and thermal stability of polyurethane intermediates and polyurethanes were investigated. The intermediates were obtained by glycolysis of waste polyurethane (PUR) in the reaction with hexamethylene glycol (HDO). The excess of HDO was not separated from the product after the glycolysis process was finished. The effects of different mass ratio of HDO to PUR foam on selected physicochemical properties (hydroxyl number, Brookfield viscosity and density) were also determined. The polyurethanes were synthesized from the obtained intermediates by the prepolymer method using diisocyanate (MDI) and glycolysis product of molecular mass in range 700/1000 g mol–1. Hexamethylene glycol, 1,4-butanediol and ethylene glycol were used as chain extender agents. Influence of NCO groups concentration in prepolymer on glass transition temperature (T g) and storage and loss modulus (E’, E’’) of polyurethanes were investigated by the DMTA method. Thermal decomposition of obtained glycolysates and polyurethanes was followed by thermogravimetry coupled with Fourier transform infrared spectroscopy. Main products of thermal decomposition were identified.  相似文献   

16.
Novel polyurethanes (PUs) were synthesized using hydroxy-terminated hyperbranched polyester (BH-20) and 4,4′-methylenediphenyl diisocyanate (MDI) as hard segments and hydroxy-terminated ethylene oxide-poly(dimethylsiloxane)-ethylene oxide triblock copolymer (PDMS-EO) as soft segment, with soft segment content ranging from 30 to 60 wt %. The PUs were synthesized by two-step solution polymerization method. The influence of the soft segment content on the structure, swelling behavior and thermal properties of PUs was investigated. According to the results obtained by swelling measurements, the increase of the hard segment content resulted in the increase of the crosslinking density of synthesized samples. DSC results showed that the glass transition temperatures increase from 36 to 65°C with increasing hard segment content. It was demonstrated using thermogravimetric analysis (TGA) that thermal stability of investigated PUs increases with increase of the soft PDMS-EO content. This was concluded from the temperatures corresponding to the 10 wt % loss, which represents the beginning of thermal degradation of samples.  相似文献   

17.
The effect of cationic groups within hard segments on shape memory polyurethane (SMPU) fibers was studied and the cyclic tensile testing was conducted to assess the shape memory effect. Mechanical properties, hard segment crystallization, and dynamic mechanical properties of SMPU ionomer fibers composed of 1,4‐butanediol (BDO), N‐methyldiethanolamine (NMDA), 4,4′‐methylenebis(phenyl isocyanate) (MDI), and poly(butylene adipate)diol (PBA) were investigated using a universal tensile tester, differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). The results demonstrate that only 2 wt% NMDA can significantly change the glass transition temperature of the soft segment phase. DSC shows that the ionic group within hard segments can facilitate the crystallization of hard segments in unsteamed SMPU ionomer fibers. But for steamed fiber specimens, this effect is insignificant. Moreover, the ionic groups in hard segments with different hard segment contents (HSC) have different effects. In unsteamed fibers with 64 wt% HSC, 2 wt% NMDA increases the glass transition of soft segments from 63.5 to 70.6°C. However, in fibers with 55 wt% HSC, the glass transition temperature is lowered from 46.7 to 33.5°C. The post‐treatment, high‐pressure steaming is an effective way to remove the internal stress and subsequently improve the dimensional stability of SMPU ionomer fibers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
The goal of this work was the synthesis of novel segmented polyurethanes with a high percentage of components derived from renewable sources. The soft segment was a polyol derived from castor oil and the hard segment structure was varied by means of different chain extenders, petrochemical-based 1,4-butanediol (BD) and corn sugar-based 1,3-propanediol (PD). The synthesis was carried out in bulk and without catalyst via a two-step polymerization varying hard segment ratio. Physico-chemical, mechanical and morphological characterization was performed by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), atomic force microscopy (AFM), mechanical testing and termogravimetric analysis (TGA). Properties have been discussed from the viewpoint of hard/soft microdomain phase separation and also the hard segment nature and formed structure. An increase in hard segment content was accompanied by an increase in hard domain order, crystallinity, and stiffness. The hard segment structures, in addition to the elastic nature of soft segment, provide enough physical crosslink sites to impart properties ranging from elastomeric to rigid behaviour with the increase of hard segment content. Polyurethanes synthesized from bio-based chain extender showed a slightly lower crystallinity in the hard segment structure than that synthesized from BD as the chain extender. This lower crystallinity avoids strength concentrations at the soft/crystalline hard segment interface, thus improving the mechanical properties at high hard segment content. The slightly higher thermal stability observed for BD based polyurethanes is related with their more packed structures and crystallinity observed in the hard segment structure.  相似文献   

19.
Semi‐interpenetrating polymer networks (semi‐IPNs) were prepared from linear polyurethane (PUR) and polycyanurate (PCN) networks. Wide‐angle X‐ray scattering measurements showed that the IPNs were amorphous, and differential scanning calorimetry and small‐angle X‐ray scattering measurements suggested that they were macroscopically homogeneous. Here we report the results of detailed studies of the molecular mobility in IPNs with PUR contents greater than or equal to 50% via broadband dielectric relaxation spectroscopy (10−2–109 Hz, 210–420 K) and thermally stimulated depolarization current techniques (77–320 K). Both techniques gave a single α relaxation in the IPNs, shifting to higher temperatures in isochronal plots with increasing PCN content, and provided measures for the glass‐transition temperature (Tg) close to and following the calorimetric Tg. The dielectric response in the IPNs was dominated by PUR. The segmental α relaxation, associated with the glass transition and, to a lesser extent, the local secondary β and γ relaxations were analyzed in detail with respect to the timescale, the shape of the response, and the relaxation strength. The α relaxation became broader with increasing PCN content, the broadening being attributed to concentration fluctuations. Fragility decreased in the IPNs in comparison with PUR, the kinetic free volume at Tg increased, and the relaxation strength of the α relaxation, normalized to the same PUR content, increased. The results are discussed in terms of the formation of chemical bonds between the components, as confirmed by IR, and the reduced packing density of PUR chains in the IPNs. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3070–3087, 2000  相似文献   

20.
Biodegradable materials are pivotal in the biomedical field, where how to precisely control their structure and performance is critical for their translational application. In this study, poly(L-lactide-b-ε-caprolactone) block copolymers (bPLCL) with well-defined segment structure are obtained by a first synthesis of poly(ε-caprolactone) soft block, followed by ring opening polymerization of lactide to form poly(L-lactide acid)  hard block. The pre-polymerization allows for fabrication of bPLCL with the definite compositions of soft/hard segment while preserving the individual segment of their special soft or hard segment. These priorities make the bPLCL afford biodegradable polymer with better mechanical and biodegradable controllability than the random poly(L-lactide-co-ε-caprolactone) (rPLCL) synthesized via traditional one-pot polymerization. 10 mol% ε-caprolactone introduction can result in a formation of an elastic polymer with elongation at break of 286.15% ± 55.23%. Also, bPLCL preserves the unique crystalline structure of the soft and hard segments to present a more sustainable biodegradability than the rPLCL. The combinative merits make the pre-polymerization technique a promising strategy for a scalable production of PLCL materials for potential biomedical application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号