首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal behavior of the yttria-stabilized zirconia (YSZ) and nickel oxide (YSZ–NiO) composite mixtures with the addition of graphite, multiwall carbon nanotubes and functionalized multiwall carbon nanotubes was studied. The YSZ–NiO composite is the precursor of the YSZ–Ni anode of solid oxide fuel cells. The anode exhibits a porous structure, which is usually obtained by the addition of carbon containing pore formers. Thermal analysis and X-ray diffraction evidenced that the properties of carbonaceous materials (C) and atmosphere have a strong influence on the thermal evolution of the reactions taking place upon heating the anode precursor. The dependence of both the carbon content and the chemical nature of the ceramic matrix on the thermal behavior of the composite were investigated. The discussed results evidenced important features for optimized processing of the anode.  相似文献   

2.
A technique for formation of electrolyte thin films with the thickness of 6–10 μm of zirconia stabilized by yttria (YSZ) is developed on the basis of the method of chemical deposition from the vapor phase of organometallic compounds (MOCVD). Planar electrochemical cells based on film electrolyte with a supporting anode with the working surface area of 12 cm2 were manufactured. A solid-oxide fuel cell (SOFC) based on two fuel cells was developed and its life cycle tests at reduced operating temperatures (<800°C) were carried out for 400 h. The maximum power density reached in the SOFC tests was 316 mW/cm2.  相似文献   

3.
The paper presents the results of experimental development of the fuel processor of natural gas steam–air conversion and power plants with different design layouts based on solid–polymer and solid–oxide fuel cells. The preferability of using solid–oxide fuel cells in stationary power plants with natural gas as fuel is confirmed. The test results confirm the working efficiency and safety of the chosen solutions. Directions for the future activity in the field of design and development of low–power power plants based on solid–oxide fuel cells are formulated.  相似文献   

4.
A porous nickel–8 mol% yttria stabilized zirconia (Ni–8YSZ) composite, used as anode for solid oxide fuel cell, was obtained by reduction of NiO–8YSZ cermet. The first goal was the evaluation of the temperature effect of powder processing by thermogravimetry. In addition, the influence of porosity in the reduction kinetic of the sample sintered at 1450 °C was evaluated. The final porosity produced in NiO–8YSZ composite by pore former was 30.4 and 37.9 vol.%, respectively, for 10 and 15 mass% of corn starch. The sample with 15 mass% of corn starch promotes a reduction rate almost twice higher than sample with 10 mass% of corn starch. The porosity introduced by the reduction of NiO was 23 vol.%.  相似文献   

5.
Motivated by recent work on the Ruddlesden–Popper material, which was shown to be a superior oxide-ion conductor than conventional solid-oxide fuel cell cathode perovskite materials, we undertook A- and B-site doping studies of the Ruddlesden–Popper nickelate series in an attempt to identify other candidates for cathode application. In this paper, we summarize our most significant results for the and systems and more recently, the higher-order Ruddlesden–Popper phases La n+1Ni n O3n+1 (n=2 and 3), which show greater promise as cathode materials than the n=1 compositions.  相似文献   

6.
The 70 wt.% Mn-doped CeO2 (MDC)-30 wt.% Scandia-stabilized zirconia (ScSZ) composites are evaluated as anode materials for solid oxide fuel cells (SOFCs) in terms of chemical compatibility, thermal expansion coefficient, electrical conductivity, and fuel cell performance in H2 and CH4. The conductivity of MDC10 (10 mol.% Mn-doping), MDC20, and CeO2 are 4.12, 2.70, and 1.94 S cm−1 in H2 at 900 °C. With 10 mol.% Mn-doping, the fuel cells performances improve from 166 to 318 mW cm−2 in H2 at 900 °C. The cell with MDC10–ScSZ anode exhibits a better performance than the one with MDC20–ScSZ in CH4, the maximum power density increases from 179 to 262 mW cm−2. Electrochemical impedance spectra indicate that the Mn doping into CeO2 can reduce the ohmic and polarization resistance, thus leading to a higher performance. The results demonstrate the potential ability of MDC10–ScSZ composite to be used as SOFCs anode.  相似文献   

7.
Improvement of long-term stability of 40vol.%NiO–60vol.% yttria-stabilized zirconia (YSZ) anode material in reducing atmosphere and under exposure to thermal shock through the modification of vacancy concentration and pore shape has been investigated for a solid oxide fuel cell. We varied the amount of Y2O3 additives from 8 to 10 mol% in YSZ and the type of carbon pore former, from plated activated carbon to spherical carbon black, to improve the strength and the stability of porous NiO–YSZ anode materials. Modifications by varying the amount of Y2O3 additives and carbon pore former result in a highly stable anode, even upon exposure to a reducing atmosphere for 1,200 h. In particular, the strengths of the new anode materials are markedly improved at the same porosity level. Higher strengths do not degrade during a longtime durability test in a reducing atmosphere or upon thermal shock testing. The relatively smaller degradation of electrical conductivity of the new anode material is discussed in terms of the possibility of suppression of the disconnectivity of Ni phases during operation of a solid oxide fuel cell.  相似文献   

8.
Journal of Thermal Analysis and Calorimetry - This paper targets to consider a hybrid cycle consisting of a solid oxide fuel cell and an Ericsson thermal engine that provides drinking water by...  相似文献   

9.
Redox cycling of Ni-based anode induces cell degradation which limits the cell's lifetime during solid oxide fuel cell operation. In the present study, the redox testing of electrolyte-supported cells has been investigated with TiO2-added NiO–YSZ anode matrix. Button cells were fabricated by die-pressing YSZ powder as electrolyte, and onto which NiO–YSZ or NiO–TiO2–YSZ anode and LSM–YSZ composite cathode were painted. The electrochemical performance and stability have been evaluated by measuring current–voltage characteristics followed by impedance spectroscopy after each redox cycling. Anode matrices before and after cell operation have been characterized by X-ray diffraction (XRD), elemental dispersive X-ray (EDX), and scanning electron microscopy (SEM). During cell operation the peak power density decreases from 111 mW cm?2 (239 mA cm?2) to 84 mW cm?2 (188 mA cm?2) between 23 and 128 h with five redox cycles for cell having NiO–YSZ (40:60) anode. But for cell with NiO–TiO2–YSZ (30:10:60), the anode peak power density was constant and stable around 85 mW cm?2 (194 mA cm?2) throughout the cell run of 130 h and five redox cycles. No loss in the open circuit voltage was observed. SEM and XRD studies of NiO–TiO2–YSZ (30:10:60) anodes revealed formation of ZrTiO4, which may be responsible for inhibition of Ni coarsening leading to stable cell performance.  相似文献   

10.
Russian Journal of Applied Chemistry - Joint precipitation of tin(IV) and magnesium hydroxides from hydrochloric acid solutions was studied by differential thermal and X-ray diffraction analysis,...  相似文献   

11.
In this study, samaria-doped ceria (Sm0.2Ce0.8O1.9, SDC) thin film is deposited on the Ni-SDC support by employing the electrophoretic deposition technique. Various factors are considered for the deposition of SDC films. The corresponding microstructure of the deposited SDC film is examined and correlated to the electrochemical performance as a single-chamber solid oxide fuel cell (sc-SOFC). It is found that the microstructure of the SDC film mainly relates to the particle size of SDC. After heat treatment, highly dense SDC film is obtained with the deposition condition of 5 g L−1 of the SDC suspension (average grain size of SDC, 248 nm), 60 V as the applied potential, and the deposition time of 1 min (18 μm in thickness). For the Ni-SDC/SDC/SSC cell, an open circuit potential of 0.92 V and peak power density of 155 mW cm−2 can be obtained at the furnace temperature of 500 °C.  相似文献   

12.
The influence of the cerium oxide concentration on the properties of glasses and glass ceramics of the SiO2–Al2O3–CaO–Na2O–MgO–K2O–B2O3–CeO2 system as potential adhesive and sealing materials for solid oxide fuel cells was studied. According to the data of differential scanning calorimetry, variation of the CeO2 concentration does not appreciably influence the glass transition and crystallization temperatures of glasses. As the cerium oxide concentration is increased, the linear thermal expansion coefficient increases for the glasses but decreases for the partially crystalline samples. The gluing temperature of the glass sealants prepared allows their use for joining YSZ solid electrolytes with interconnectors of Crofer22APU type in solid oxide fuel cells..  相似文献   

13.
14.
A deflagration-to-detonation transition was experimentally detected for the first time in a channel with a thin wall liquid-fuel film and a gaseous oxidizer using a weak ignition source, which generates no primary shock wave of any significant intensity. In a number of tests, a low-velocity quasi-stationary detonationlike combustion front traveling at an average velocity of 700–900 m/s was recorded; the structure of this front included a leading shock wave and a reaction zone following after a time delay of 80 to 150 μs.  相似文献   

15.
The development of solid oxide fuel cells (SOFC) offers new perspectives, in particular as auxiliary power units for vehicle applications. The elaboration of thin electrolyte layers is the main challenge in order to reduce their operating temperature. A brief review of the deposition techniques and of the potential electrolytes is presented. A relatively new technique, Atomic Layer Deposition (ALD), allows to produce thin, dense and homogeneous layers, i.e. zirconia or zirconia-based thin layers can be deposited on different substrates. The interest of elaborating bi- or multi-layer electrolytes is outlined.  相似文献   

16.
In recent decades, high-temperature oxygen reduction reaction on mixed conducting cathodes were investigated intensively by many researchers. Computational approaches as well as electrochemical and spectroscopic studies have been made to elucidate the kinetics. Contribution of oxygen vacancy to the reaction rate was suggested in multiple reports, and plausible reaction pathways were proposed based on density functional theory (DFT) calculations. The picture of oxygen reduction reaction has become clearer in these years. However, there still is a discussion about a credible formula that represents the current–voltage relationships. Discrepancies are found among the reported data on the magnitude of the rate constant and on its dependencies on partial pressure and temperature. The difference is significant between a model electrode and a practical porous electrode. Comparison of the results suggests the existence of series reaction barriers, that is, the surface reaction and subsurface transport, which should be considered for consistent representation of the total electrode process.  相似文献   

17.
Rare earth oxides in spent oxide fuel from nuclear plants have poor reducibility in the electrochemical reduction process due to their high oxygen affinity and thermodynamic stability. Here, we demonstrate that the extent of their reduction can be enhanced via co-reduction of NiO in a Li2O–LiCl electrolyte for the electrochemical reduction of a simulated oxide fuel (simfuel). First, the electrochemical behaviors of Nd2O3, NiO, and Nd2O3–NiO were studied by cyclic voltammetry and voltage control electrolysis. Then, the electrochemical reduction of the simfuel containing UO2 and rare earth oxides (Nd2O3, La2O3, and CeO2) was conducted in molten LiCl salt with 1 wt.% Li2O via the co-reduction of NiO. The extent of reduction of the rare earth oxides was found to be significantly improved.  相似文献   

18.
The anodic performances of Ni/CeO2–Sm2O3(Ni/SDC) modified by the addition of alkaline earth metal oxides (MgO, CaO, and SrO) were investigated for direct oxidation of CH4 in solid oxide fuel cells (SOFCs). Although the initial power density of cell with Ni/SDC anode modified by the addition of CaO was slightly lower than that of cell with Ni/SDC, the former anode exhibited an excellent stability compared to the latter one. Such a high stability of Ni–CaO/SDC anode may come from the inhibition of carbon deposition in addition to the retained ionic conductivity of anode.  相似文献   

19.
Very high electrical conductivity of ~0.021 S/cm at 600 °C is obtained in Ce0.79Gd0.20Co0.01O2?δ. Corresponding activation energy of conduction ~0.43 eV measured in the temperature range of 400–700 °C is found to be notably low. Improved electrical properties with 99% of the theoretical density as obtained for these specimens, prepared using powder of average particle size ~20 nm and subsequent sintering at 1100 °C, is considered to be a significant step to reduce the processing temperature. The measured electrical potential of ~1 V indicates the suitability of its use as an electrolyte in electrochemical devices.  相似文献   

20.
An approach was developed towards design of medium-temperature solid-oxide fuel cells based on a deformation strengthened Ni-Al alloy. Methods of sintering were described that allowed obtaining layers of complex oxides with ionic and mixed conductivity and with regulated porosity in the range of 40–1%. Power density of a fuel cell on a metallic support reaches 500 mW/cm2 already at 700°C when humid H2 was used as fuel and air was used as an oxidant. Analysis of fuel cell cross-section after tests showed absence of fractures, flaking, and new phases with low conductivity, which proves good compatibility of all materials used in fuel cell design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号