首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
随着质谱技术的不断发展,对超高质量颗粒物质的分析已经成为质谱领域研究的一个重要方向.离子阱颗粒质谱(particle ion trap mass spectrometry)作为用于完整颗粒质量分析的有利工具,拓展了质谱技术在巨大颗粒物质量分析中的应用范围.本文对离子阱颗粒质谱仪器的研究进展及其在各个领域的应用进行了综述,并展望了离子阱颗粒质谱未来的发展趋势.  相似文献   

2.
Low-resolution electron ionization mass spectra recorded on various types of mass spectrometers (time-of-flight, quadrupole, and three-dimensional ion trap) were compared. A model mixture of 10 organic compounds (MW < 200 Da) was analyzed by gas chromatography-mass spectrometry. Pure mass spectra of analytes were extracted using the AMDIS software. The best repeatability was achieved for the time-of-flight mass spectrometer. The mass spectra recorded by a quadrupole and a time-of-flight mass spectrometer were quite similar. In the case of these instruments, library search using a commercial mass spectral data base (NIST’05) gave satisfactory result for each analyte (rank 1 or 2 in the “hit list”; Match > 900). In some cases, the mass spectra of model compounds recorded by the ion trap mass spectrometer differed in intensity of certain mass spectral peaks (but not in the set of peaks) from the mass spectra presented in the library and from the experimental mass spectra recorded by the time-of-flight and quadrupole instruments.  相似文献   

3.
Mass defect is defined as the difference between a compound's exact mass and its nominal mass. This concept has been increasingly used in mass spectrometry over the years, mainly due to the growing use of high resolution mass spectrometers capable of exact mass measurements in many application areas in analytical and bioanalytical chemistry. This article is meant as an introduction to the different uses of mass defect in applications using modern MS instrumentation. Visualizing complex mass spectra may be simplified with the concept of Kendrick mass by plotting nominal mass as a function of Kendrick mass defect, based on hydrocarbons subunits, as well as slight variations on this theme. Mass defect filtering of complex MS data has been used for selectively detecting compounds of interest, including drugs and their metabolites or endogenous compounds such as peptides and small molecule metabolites. Several strategies have been applied for labeling analytes with reagents containing unique mass defect features, thus shifting molecules into a less noisy area in the mass spectrum, thus increasing their detectability, especially in the area of proteomics. All these concepts will be covered to introduce the interested reader to the plethora of possibilities of mass defect analysis of high resolution mass spectra. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
To utilize fully modern MALDI-TOF and TOF/TOF mass spectrometers with mass resolution exceeding 10,000 and 2 ppm precision of flight time measurements for high mass accuracy, the model of ion motion used in the mass calibration equation must be expanded. The standard three-term equation providing up to 5-10 ppm (rms) mass accuracy with internal standards was modified with an additional term accounting for the finite rise time of the high-voltage extraction pulse. This new four-term calibration equation minimizes the effect of systematic error resulting from the fact that ion velocities are mass dependent due to the rise time of the extraction pulse. Applying this new calibration equation to a mass spectrum obtained in an axial MALDI-TOF MS containing 70 peaks (sodiated PEG), each with a signal-to-noise ratio greater than 100, a mass accuracy of 1.6 ppm (rms) was obtained over the mass range 1.0-4.0 kDa compared with 3.6 ppm (rms) with the standard three-term equation. The physical basis of the effects of the finite extraction pulse rise time on mass calibration is examined for axial MALDI-TOF mass spectrometers, as well as for orthogonal acceleration TOF mass spectrometers.  相似文献   

5.
We report herein, facile metabolite identification workflow on the anti-depressant nefazodone, which is derived from accurate mass measurements based on a single run/experimental analysis. A hybrid LTQ/orbitrap mass spectrometer was used to obtain accurate mass full scan MS and MS/MS in a data-dependent fashion to eliminate the reliance on a parent mass list. Initial screening utilized a high mass tolerance ( approximately 10 ppm) to filter the full scan MS data for previously reported nefazodone metabolites. The tight mass tolerance reduces or eliminates background chemical noise, dramatically increasing sensitivity for confirming or eliminating the presence of metabolites as well as isobaric forms. The full scan accurate mass analysis of suspected metabolites can be confirmed or refuted using three primary tools: (1) predictive chemical formula and corresponding mass error analysis, (2) rings-plus-double bonds, and (3) accurate mass product ion spectra of parent and suspected metabolites. Accurate mass characterization of the parent ion structure provided the basis for assessing structural assignment for metabolites. Metabolites were also characterized using parent product ion m/z values to filter all tandem mass spectra for identification of precursor ions yielding similar product ions. Identified metabolite parent masses were subjected to chemical formula calculator based on accurate mass as well as bond saturation. Further analysis of potential nefazodone metabolites was executed using accurate mass product ion spectra. Reported mass measurement errors for all full scan MS and MS/MS spectra was <3 ppm, regardless of relative ion abundance, which enabled the use of predictive software in determining product ion structure. The ability to conduct biotransformation profiling via tandem mass spectrometry coupled with accurate mass measurements, all in a single experimental run, is clearly one of the most attractive features of this methodology.  相似文献   

6.
P Roepstorff 《The Analyst》1992,117(3):299-303
Plasma desorption and fast atom bombardment mass spectrometry have in the last decade demonstrated the potential of mass spectrometry for protein studies. The recently developed matrix-assisted laser desorption and electrospray mass spectrometry have expanded the analytical potential of mass spectrometry to cover nearly all proteins. The type of information obtained with the four methods is described and their performances are compared. The potential of combining mass spectrometric relative molecular mass information on proteins with the information contained in protein sequence databases is outlined and some typical fields of application of mass spectrometry in protein chemistry are described. The need for the full integration of mass spectrometry in the protein laboratory is discussed.  相似文献   

7.
Precision proteomics requires high-resolution and high mass accuracy peptide measurements. The Orbitrap instrument achieves excellent resolution on a chromatographic time scale and its design is favorable for very high mass accuracy. Here we describe how mass precision for each peptide increases successively by considering all associated measurements, starting from the MS peak and proceeding to its chromatographic elution profile, isotope envelope, and stable isotope pair in SILAC measurements. We extract peptide charge pairs to perform nonlinear recalibration of the Orbitrap mass scale through spline interpolation. The deviation of mass values determined from charge pairs is used to convert mass precision to mass accuracy for subsequent database search. The corrected mass precision is consistent with the mass accuracy independently determined by database identification. Individual mass deviations range from below 100 ppb for peptides with many associated mass measurements and good signal intensities to low ppm for peptides with few mass measurements and signals close to the noise level. This extremely high and individualized mass accuracy is equivalent to a substantial increase in database identification score.  相似文献   

8.
Concentration factors of 1000 and more reveal dozens of compounds in extracts of water supplies. Library mass spectra for most of these compounds are not available, and alternative means of identification are needed. Determination of the elemental compositions of the ions in mass spectra makes feasible searches of commercial and chemical literature that often lead to compound identification. Instrumental capabilities that constrain the utility of a mass spectrometer for determining ion compositions for compounds that elute from a chromatographic column are scan speed, mass accuracy, linear dynamic range, and resolving power. Mass peak profiling from selected ion recording data (MPPSIRD) performed with a double-focusing mass spectrometer provides the best combination of these capabilities. This technique provides unique ion compositions for ions of higher mass from compounds eluting from a gas chromatograph than can be obtained by orthogonal acceleration time-of-flight (oa-TOF) or Fourier transform ion cyclotron resonance mass spectrometry. Multiple compositions are usually possible for an ion with a mass exceeding 150 Da within the error limits of the mass measurement. The correct composition is selected based on measured exact masses of the mass peak profiles resulting from isotopic ions higher in mass by 1 and 2 Da and accurate measurement of the summed abundances of these isotopic ions relative to the monoisotopic ion. A profile generation model (PGM) automatically determines which compositions are consistent with measured exact masses and relative abundances. The utility of oa-TOF and double-focusing mass spectrometry using ion composition elucidation (MPPSIRD plus the PGM) are considered for determining ion compositions of two compounds found in drinking water extracts and a third compound from a monitoring well at a landfill. Published in 2002 by John Wiley & Sons, Ltd.  相似文献   

9.
本文归纳了无机质谱法在固体直接分析中的应用,并详细阐述了辉光放电质谱法(GDMS)、二次离子质谱法(SIMS)、激光溅射电感耦合等离子体质谱法(LA-ICPMS)和激光电离质谱法(LIMS)四种可用于固体样品直接检测的无机质谱法的检测原理、应用以及各自的优缺点.  相似文献   

10.
The post-translational modifications of the 96 kDa protein dynamin A from Dictyostelium discoideum were analyzed using Q-TOF mass spectrometry. The accurate molecular mass of the intact protein revealed a covalent modification causing an additional mass of 42 Da. The modification could be identified as N-terminal acetylation by tandem mass spectrometry. Extracted ion chromatograms for the a(1) and b(1) ion of the tryptic T1 peptide were used to detect the acetylated peptide within 54 nanoelectrospray ionization tandem mass spectra. Owing to the accurate molecular mass of the intact protein, additional covalent modifications could be excluded. In addition to the covalent modification, the domain structure of dynamin A was determined by applying a combination of limited proteolysis, sodium dodecylsulfate polyacrylamide gel electrophoresis, automated tandem mass spectrometry and protein database searching.  相似文献   

11.
This article describes a simple method to perform lock mass corrected accurate mass measurements in tandem mass spectrometry (MS/MS) with a quadrupole time-of-flight (Q-TOF) mass spectrometer. The experimental approach consists of using the protonated molecule of a known compound, which is measured in a MS/MS function using low collision energy (no fragmentation), as mass calibrator. The unknown compound is acquired in MS/MS mode albeit using high collision energy. After the acquisition, the two MS/MS spectra of unknown and mass calibrator are combined, and the fragments of the unknown are lock mass corrected by using the protonated molecule of the mass calibrator. To prove this concept, 10 compounds were analyzed using this approach, the fragments interpreted and, where possible, related to structural data available in the literature. All the unequivocally assigned fragments were accurately mass measured with mass errors within appropriate limits, i.e. for m/z values <200 with a mass tolerance of 3 mDa while for m/z > 200 the mass tolerance is expressed as 10 ppm.  相似文献   

12.
根据SY/T 5862–2008聚丙烯酰胺相对分子质量测量方法,测量了超高分子量聚丙烯酰胺的相对分子质量。经过对聚丙烯酰胺相对分子质量测量过程引入的不确定度进行分析和评定,不确定度的来源主要是试样目标液配制过程中引入的不确定度,其次是相对分子质量测量重复性、试样固含量的测定以及温度所引入的不确定度。聚丙烯酰胺相对分子质量测定结果为(2500.6±32.6)×104,k=2。  相似文献   

13.
Desorption electrospray ionisation (DESI) has been successfully combined with a hybrid quadrupole time-of-flight mass spectrometer to provide mass spectra and product ion mass spectra of active ingredients formulated in pharmaceutical tablets, gels and ointments. Accurate mass data has been obtained from the DESI mass spectra and of the product ion fragments of selected ions, greatly enhancing the selectivity and information content of the experiment. This accurate mass information only takes seconds to acquire since the DESI technique does not require any sample preparation or extraction prior to mass analysis.  相似文献   

14.
An apparatus based on collinear tandem time-of-flight mass spectrometer has been designed for the measurement of infrared photodissociation spectroscopy of mass-selected ions in the gas phase.The ions from a pulsed laser vaporization supersonic ion source are skimmed and mass separated by a Wiley-McLaren time-of-flight mass spectrometer.The ion of interest is mass selected,decelerated and dissociated by a tunable IR laser.The fragment and parent ions are reaccelerated and mass analyzed by the second time-of-flight mass spectrometer.A simple new assembly integrated with mass gate,deceleration and reacceleration ion optics was designed,which allows us to measure the infrared spectra of mass selected ions with high sensitivity and easy timing synchronization.  相似文献   

15.
We have designed and synthesized various mass probes, which enable us to effectively ionize various molecules to be detected with mass spectrometry. We call the ionization method using mass probes the "MPAI (mass probes aided ionization)" method. We aim at the sensitive detection of various biological molecules, and also the detection of bio-molecules by a single mass spectrometry serially without changing the mechanical settings. Here, we review mass probes for small molecules with various functional groups and mass probes for proteins. Further, we introduce newly developed mass probes for proteins for highly sensitive detection.  相似文献   

16.
Gas chromatography/mass spectrometry (GC/MS), with an ion trap mass analyzer, was used to examine the very-long-chain cuticular acid and certain non-acid wax constituents on the leaf sheath surface of Sorghum bicolor before and during 36 hours of light exposure. The mass spectra of the trimethylsilylated acids and alcohols did not match any of those published in searchable mass spectral libraries. The observed differences can be related to the interaction between water and the trimethylsilylated acids and alcohols. Understanding the observed mass spectra of the very-long-chain plant waxes is critical for studies that employ GC/MS with the ion trap mass analyzer to elucidate cuticular wax compositions on plants.  相似文献   

17.
Complex metabolic mixtures of 2-aminopropiophenones, obtained both after in vitro and human in vivo metabolism of these compounds, have been investigated using both mass spectrometry and gas chromatography/mass spectrometry. The mass spectrometric fragmentation schemes of the compounds have been proposed and verified. The schemes are based on the characteristic fragments obtained by alpha-cleavage of these compounds using direct inlet mass spectrometry or gas chromatography/mass spectrometry. These findings were confirmed with chemical ionization mass spectrometry, when quasi-molecular (MH+) ions were obtained as the highest relative abundance ions for all the compounds investigated, and were used in metabolic investigations of 2-aminopropiophenones.  相似文献   

18.
In this study, accurate mass measurements were made by electrospray ionization (ESI) on a triple quadrupole mass spectrometer operating in enhanced mass-resolution mode (peak width = 0.1 u FWMH), to give qualitative information relating to the pharmaceutical, cabergoline. Accurate mass determinations by ESI-MS were performed on a protonated impurity formed during cabergoline storage. The accurate mass measurement resulted in only one proposed elemental composition for the impurity, using reasonable elemental limits and mass tolerance for the calculation. This information was sufficient to propose a structure for the impurity where ESI-MS/MS proved consistent. The difference between the accurate mass measurement and the exact mass calculated for the proposed structure was 0.8 mmu, with a standard deviation of 0.7 mmu for replicate accurate mass determinations. Accurate mass determinations in ESI-MS/MS provided information on cabergoline fragment ions formed through collisionally-induced dissociation. Since the potential formation of isobaric ions exists for two major cabergoline fragment ions, accurate mass measurement allowed for the determination of the most probable fragment ion structures. The differences between the accurate mass measurements and exact masses calculated for the proposed fragment ions were 1.9 and 2.1 mmu, with standard deviations of 0.4 and 0.8 mmu, respectively, for replicate determinations.  相似文献   

19.
利用MassWorks软件对GC/MS采集的目标农药谱图经过校正后,实现了在单位分辨率质谱上测定6种农药化合物的精确质量数,质量误差小于20mDa;在精确质量数基础上,进一步采用同位素峰形校正检索技术(CLIPs), 实现了对目标农药分子式的准确识别,建立了在单位分辨率质谱上准确测定农药小分子化合物的方法,提升了单位分辨率质谱的定性能力。通过对丙草胺及哒螨灵二种农药的质谱碎片所获得的MassWorks精确质量数及元素组成推导其质谱碎裂机理, 通过对碎片的精确质量数测定可提高对目标物定性的准确性。  相似文献   

20.
A method has been developed to identify oligonucleotide-peptide heteroconjugates by accurate mass measurements using MS. The fractional mass (the decimal fraction mass value following the monoisotopic nominal mass) for peptides and oligonucleotides is different due to their differing molecular compositions. This property has been used to develop the general conditions necessary to differentiate peptides and oligonucleotides from oligonucleotide-peptide heteroconjugates. Peptides and oligonucleotides generated by the theoretical digestion of various proteins and nucleic acids were plotted as nominal mass versus fractional mass. Such plots reveal that three nucleotides cross-linked to a peptide produce enough change in the fractional mass to be recognized from non-cross-linked peptides at the same nominal mass. Experimentally, a Cytochrome c digest was spiked with an oligonucleotide-peptide heteroconjugate and conditions for analyzing the sample using liquid chromatography (LC)-MS were optimized. Upon analysis of this mixture, all detected masses were plotted on a fractional mass plot and the heteroconjugate could be readily distinguished from non-cross-linked peptides. The method developed here can be incorporated into a general proteomics-like scheme for identifying protein-nucleic acid cross-links, and this method is equally applicable to characterizing cross-links generated from protein-DNA and protein-RNA complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号