首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since biologically active peptides usually exhibit their effects in low concentrations, the development of sensitive analytical methods has become a challenge. In this paper, a multidimensional system is presented, consisting of a size-exclusion chromatographic (SEC) separation followed by a trapping procedure on a 4 mm x 3 mm ID reversed-phase C18 (RP18) column with subsequent elution of the trapped fraction and separation by capillary zone electrophoresis (CZE). The system has been tested with mixtures of six enkephalins and albumin, mimicking biological matrices such as plasma and cerebrospinal fluid. After separation of albumin from the enkephalins in the SEC dimension a heart-cut of 200 micro L, containing the enkephalin peak, is taken, concentrated on the RP18 microcolumn and, after elution with a 20 micro L plug of 80% acetonitrile, electrokinetically injected into the CZE system, where stacking and separation is achieved. While validation shows generally good linearity and reproducibility, the quantitation limit with UV detection is acceptable (2.5 micro g/ mL with an injection volume of 50 micro L).  相似文献   

2.
Capillary zone electrophoresis (CZE) and reverse phase high‐performance liquid chromatography (RP‐HPLC) were used for separation of diastereomers of phosphinic pseudopeptides in achiral separation media. A set of phosphinic pseudopeptides, i. e. peptides with one peptide bond substituted by phosphinic acid moiety ‐PO2‐CH2‐ derived from the structure N‐Ac‐Val‐AlaB(‐CH2)Leu‐His‐NH2 synthesized as a mixture of four diastereomers was used. Separations of diastereomers by CZE were carried out in Tris‐phosphate background electrolytes in the pH range 1.1–3.2 and at least partial separation of the four diastereomers of each pseudopeptide was achieved. A routinely used RP‐HPLC method (C18‐silica column and water/acetonitrile/trifluoroacetic acid mobile phase) was also capable of resolving the diastereomers. In addition, since individual diastereomers of majority of the pseudopeptides were isolated by RP‐HPLC it was possible to check the purity of these RP‐HPLC separated diastereomers and to compare the migration order of the diastereomers in CZE with their elution order in RP‐HPLC. The results obtained by CZE and RP‐HPLC demonstrate a complementarity of both methods in analysis and separation of phosphinic pseudopeptides including their diastereomers.  相似文献   

3.
CZE with UV-absorption detection has been used for the separation and determination of enkephalin-related peptides. The experimental conditions, such as pH and concentration of running buffer, applied voltage, injection method, and time, were investigated in detail. Excellent separation efficiency could be obtained for ten enkephalin-related peptides with a 50 microm (ID) x 58 cm capillary using sodium dihydrogen phosphate as the running buffer (pH 3.11) when 20 kV of applied voltage was used. The concentration detection limits were found to be in the range of 0.31-1.94 microg/mL (defined as S/N = 3). The proposed method has been applied to analyze the spiked cerebrospinal fluid (CSF) sample, and the results showed that CZE is a powerful technique for separation and detection of the above biological peptides.  相似文献   

4.
Low-impact ionization sources like electrospray ionization (ESI) and matrix-assisted, laser desorption/ionization (MALDI) equipped with time-of-flight (TOF) mass analyzers provide intact protein analysis over a very wide molar mass range. ESI/TOFMS provides also indications on the higher-order structure of intact proteins and non-covalent protein complexes. However, direct analysis of intact proteins mixtures in real samples shows limited success, mainly because spectra become very complex to interpret. This is also due to sample contaminants, and to the mechanism of competitive ionization in ESI or MALDI. Rapid and efficient sample clean-up and separation methods can significantly enhance the power of TOFMS for intact protein analysis. However, if protein native conditions want to be maintained, the methods should affect neither the three-dimensional structure nor the non-covalent chemistry of the proteins. Reversed-phase (RP) HPLC, size-exclusion chromatography (SEC), and capillary zone electrophoresis (CZE) are on-line or off-line coupled to ESI/TOFMS or MALDI/TOFMS. In fact, these separation methods often show limitations when applied to the analysis of native proteins. Organic modifiers and saline buffers are required in the case of RP HPLC or CZE. They can induce protein degradation or affect ionization when MS is performed after separation. High voltages used in CZE can contribute to alter proteins from their native form. In the case of high molar mass proteins, SEC is scarcely selective, and barely able to detect protein aggregates. Sample entanglement/adsorption on the stationary phase can also occur.  相似文献   

5.
In the present work, a 2-D capillary liquid chromatography method for fractionation and separation of human salivary proteins is demonstrated. Fractionation of proteins according to their pI values was performed in the 1-D employing a strong anion exchange (SAX) column subjected to a wide-range descending pH gradient. Polystyrene-divinylbenzene (PS-DVB) RP columns were used for focusing and subsequent separation of the proteins in the 2-D. The SAX column was presaturated with a high pH buffer (A) consisting of 10 mM amine buffering species, pH 9.0, and elution was performed with a low pH elution buffer (B) having the same buffer composition and concentration as buffer A, but pH 3.5. Isoelectric point fractions eluting from the 1-D column were trapped on PS-DVB trap columns prior to back-flushed elution onto the PS-DVB analytical column for separation of the proteins. The 1-D fraction eluting at pH 9.0-8.7 was chosen for further analysis. After separation on the RP analytical column, nine RP protein fractions were collected and tryptic digested for subsequent analyses by MALDI TOF MS and column switching capillary LC coupled to ESI TOF MS and ESI QTOF MS. Eight proteins and two peptides were identified in the pH 9.0-8.7 fraction using peptide mass fingerprinting and uninterpreted MS/MS data.  相似文献   

6.
Highly reliable and accurate analytical methods are needed for the determination of magnetic resonance imaging (MRI) contrast agents in complex matrices of clinical interest. We demonstrate the reliability of capillary zone electrophoresis (CZE) coupled with electrospray ionization-mass spectrometry (ESI-MS) for the analysis of MultiHance (gadobenate dimeglumine), a gadolinium-based MRI agent. A sheath liquid interface connected the CE system with an electrospray mass spectrometer equipped with an ion-trap analyzer. CZE with ultraviolet (CZE-UV) and with mass detection (CZE-MS) were compared by analyzing gadobenate dimeglumine and the free ligand diluted in water and in biological fluids (i.e., human serum and urine). The optimization of some relevant CZE-MS parameters was accomplished, like CE buffer composition, sheath liquid composition and flow, and type and length of the separation capillary. CZE-UV was highly influenced by the biological sample components, which hindered a reliable quantification of both gadobenate and free ligand in serum and urine. In CZE-MS, on the other hand, the electrophoretic runs turned out to be independent of the clinical matrices, due to the informative potential and to the selectivity of MS detection.  相似文献   

7.
The determination of peptides and proteins in a biological matrix normally includes a sample-preparation step to obtain a sample that can be injected into a separation system in such a way that peptides and proteins of interest can be determined qualitatively and/or quantitatively. This can be a rather challenging, labourious and/or time-consuming process. The extract obtained after sample preparation is further separated using a compatible separation system. Liquid chromatography (LC) is the generally applied technique for this purpose, but capillary zone electrophoresis (CZE) is an alternative, providing fast, versatile and efficient separations. In this review, the recent developments in the combination of sample-preparation procedures with LC and CZE, for the determination of peptides and proteins, will be discussed. Emphasis will be on purification from and determination in complex biological matrices (plasma, cell lysates, etc.) of these compounds and little attention will be paid to the proteomics area. Additional focus will be put on sample-preparation conditions, which can be hard or soft, and on selectivity issues. Selectivity issues will be addressed in combination with the used separation technique and a comparison between LC and CZE will be made.  相似文献   

8.
High-resolution liquid chromatography separation is essential to in-depth proteomic profiling of complex biological samples. Herein, we established an ion-pair reversed-phase×reversed-phase two-dimensional liquid chromatography (IPRP×RP 2DLC) strategy for comprehensive proteomic analysis. Both RPLC separation dimensions were performed at low pH, with trifluoroacetic acid(TFA) and formic acid(FA) as mobile phase addictive, respectively. As the good separation resolution offered by ion-pairing effect of TFA, the fractionation efficiency was greatly improved with 74.0% peptides identified in just one fraction. Comparing with conventional high pH RP fractionation, the overall separation rate of IPRP was about 1.6 times that of high-pH RP, which increased the number of identified peptides by 21%. Further, 2169 proteins and 8540 peptides were confidently identified from crude serum sample by our IPRP×RP 2DLC strategy, exhibiting great potential in clinical proteomics in the future.  相似文献   

9.
Abstract

In continuation of our work dealing with multicolumn HPLC (MC-HPLC) techniques and their applicabilities for tracing a few compounds out of complex multicomponent matrices a residue analysis of the herbicides 2,4,5T and MCPA (phenoxyacids) in wheat is described. A simple plant extract with aqueous basic buffer is loaded in quantities of several 100μl onto a strong anion exchanger (column 1, C1) performing extraction of the acidic compounds, while the neutral and cationic substances are cluted thus attaiming on-column trace enrichment. Via mobile phase selection (pH change) elution from C1 is possible, the fraction (zone-cut) containing the compounds of interest is transferred onto C2 (reversed phase, RP2 an RP 18) on which peak compression is performed followed by (step)gradient elution. Detection limits in the lower ppb range are routinely obtained. A MC-HPLC chromatographic setup separation of eleven acidic herbicides in a formulation is also shown.  相似文献   

10.
Hyperlink robust biocompatible solid-phase microextraction (SPME) devices were prepared using continuous bed (monolithic) restricted-access media (RAM) as the SPME capillary insert. The RAM-based SPME approach was able to simultaneously separate proteins from a biological sample, while directly extracting the active components of caffeine, paracetamol and acetylsalicylic acid from the drug NeoCitramonum. The devices were interfaced with a CZE system and fully automated analysis for sample preconcentration, desorption, separation and quantification of analytes was evaluated. Comparative study of in-line coupled SPME-CZE using RAM and RP capillary inserts was carried out. Using an SPME (RAM) insert, the calculated caffeine, paracetamol and acetylsalicylic acid LODs in a bovine plasma sample were 0.3, 0.8 and 1.9 ng/mL, respectively.  相似文献   

11.
An on-line preconcentration method using a polymeric monolithic support is proposed for the retention of the decapeptide angiotensin I and its subsequent analysis by CZE. Monolithic capillary columns were prepared in fused-silica (FS) capillaries of 150 microm id by ionizing radiation-initiated in situ polymerization and cross-linking of diethylene glycol dimethacrylate and glycidyl methacrylate, and chemically modified with iron protoporphyrin IX (Fe-ProP). Monolithic microcolumns (8 mm long) were coupled on-line to the inlet of the separation capillary (FS capillary, 75 microm id x10 cm from the inlet to the microcolumn and 27 cm from the microcolumn to the detector). Angiotensin I was released from the sorbent by a 50 mM sodium phosphate, pH 2.5/ACN, 75:25 v/v solution and then analyzed by CZE with UV absorption detection at 214 nm. The concentration LOQ (CLOQ) was 0.5 ng/mL. The Fe-ProP-derivatized monolithic microcolumn coupled to the separation capillary exhibited a high retention capacity for peptide angiotensin I, and showed as much as 10,000-fold improvement in concentration sensitivity.  相似文献   

12.
The retention behaviour and selectivity of selected basic, neutral and acidic peptides have been studied by capillary electroendoosmotic chromatography (CEC) with Hypersil C8, C18, Hypersil mixed-mode, and Spherisorb C18/SCX columns, 250 (335) mm x 100 microns, packed with 3 microns particles, and eluted with mobile phases composed of acetonitrile-triethylamine-phosphoric acid (TEAP) at pH 3.0 using a Hewlett-Packard Model HP3DCE capillary electrophoresis system. The selected peptides were desmopressin (D), two analogues (A and B) of desmopressin, oxytocin (O) and carbetocin (C). The peptides eluted either before or after the electroendoosmotic flow (EOF) marker, depending on the concentration of acetonitrile used and the buffer ionic strength. The retention and selectivity of these peptides under CEC conditions were compared to their behaviour in free zone capillary electrophoresis (CZE), where the separation mode was based on the electrophoretic migration of the analytes due to their charge and Stokes radius properties. In addition, their retention behaviour in RP-HPLC was also examined. As a result, it can be concluded that the elution process of this group of synthetic peptides in CEC with a TEAP buffer at pH 3.0 is mediated by a combination of both electrophoretic migration processes and retention mechanisms involving hydrophobic as well as silanophilic interactions. This CEC method when operated with these 3 microns reversed-phase and mixed-mode sorbents with peptides is thus a hybrid of two well-known analytical methods, namely CZE and RP-HPLC. However, the retention behaviour and selectivity of the selected peptides differs significantly in the CEC mode compared to the RP-HPLC or CZE modes. Therefore this CEC method with these peptides represents an orthogonal analytical separation procedure that is complimentary to both of these alternative techniques.  相似文献   

13.
Animal venoms are complex mixtures of more than 100 different compounds, including peptides, proteins, and nonprotein compounds such as lipids, carbohydrates, and metal ions. In addition, the existing compounds show a wide range of molecular weights and concentrations within these venoms, making separation and purification procedures quite tedious. Here, we analyzed for the first time by MS the advantages of using the OFFGEL technique in the separation of the venom components of the Egyptian Elapidae Walterinnesia aegyptia snake compared to two classical methods of separation, SEC and RP‐HPLC. We demonstrate that OFFGEL separates venom components over a larger scale of fractions, preserve respectable resolution with regard to the presence of a given compound in adjacent fractions and allows the identification of a greater number of ions by MS (102 over 134 total ions). We also conclude that applying several separating techniques (SEC and RP‐HPLC in addition to OFFGEL) provides complementary results in terms of ion detection (21 more for SEC and 22 more with RP‐HPLC). As a result, we provide a complete list of 134 ions present in the venom of W. aegyptia by using all these techniques combined.  相似文献   

14.
An Y  Cooper JW  Balgley BM  Lee CS 《Electrophoresis》2006,27(18):3599-3608
Besides the complexity in protein samples of biological origin, probably the greatest challenge presently facing comprehensive proteome analysis is related to the large variation of protein relative abundances (>6 orders of magnitude), having potential biological significance in mammalian systems. As demonstrated in this work, transient capillary ITP/zone electrophoresis (CITP/CZE) provides selective analyte enrichment through electrokinetic stacking and extremely high resolving power toward protein and peptide mixtures. The result of the CITP process is that major components may be diluted, but trace compounds are concentrated. The on-column transition of CITP to CZE minimizes additional band broadening while providing superior analyte resolution. Online coupling of transient CITP/CZE with nano-ESI-MS allows ultrasensitive detection of trace peptides at levels of subnanomolar concentration or subfemtomole mass in complex peptide mixtures. More importantly, selective enrichment of trace peptides enables the identification and sequence analysis of low-abundance peptides co-migrated with highly abundant species at a concentration ratio of 1:500,000. The combined CITP/CZE-nano-ESI-MS system is demonstrated to be at least one to two orders of magnitude more sensitive than that attained in conventional electrophoretic and chromatographic-based proteome technologies over a wide dynamic concentration range, potentially allowing comprehensive analysis of protein profiles within a small cell population and limited tissue samples using conventional mass spectrometers. Furthermore, the speed of CITP/CZE separation and the lack of column equilibration in CITP/CZE not only improve the throughput of proteome analysis, but also facilitate its seamless integration with other separation technologies in a multidimensional protein identification platform.  相似文献   

15.
Analytical chemistry of metallothioneins based on the coupling of a high resolution separation technique with an element or species selective detection technique is discussed. The role of size-exclusion chromatography (SEC) with on-line atomic spectrometric detection for the quantification of metallothionein fraction in cell cytosols is evaluated. Particular attention is given to the conditions for the separation of metallated metallothionein isoforms (MT-1, MT-2, MT-3) and sub-isoforms within these classes by anion-exchange and reversed-phase HPLC. Techniques for interfacing chromatography with atomic absorption spectrometry (AAS), inductively coupled plasma atomic emission spectrometry (ICP AES) and ICP mass spectrometry (MS) are assessed. The potential of electrospray (tandem) mass spectrometry for the characterization of metallothionein isoforms with respect to molecular mass and aminoacid sequence is highlighted. Perspectives for capillary zone electrophoresis (CZE), microbore and capillary HPLC with ICP MS and electrospray MS(/MS) detection for the probing of metallothioneins are discussed. Applications of hyphenated techniques to the analysis of real-world samples are reviewed.  相似文献   

16.
Lam MP  Lau E  Siu SO  Ng DC  Kong RP  Chiu PC  Yeung WS  Lo C  Chu IK 《Electrophoresis》2011,32(21):2930-2940
In this paper, we describe an online combination of reversed‐phase/reversed‐phase (RP–RP) and porous graphitic carbon (PGC) liquid chromatography (LC) for multicomponent analysis of proteomics and glycoproteomics samples. The online RP–RP portion of this system provides comprehensive 2‐D peptide separation based on sequence hydrophobicity at pH 2 and 10. Hydrophilic components (e.g. glycans, glycopeptides) that are not retained by RP are automatically diverted downstream to a PGC column for further trapping and separation. Furthermore, the RP–RP/PGC system can provide simultaneous extension of the hydropathy range and peak capacity for analysis. Using an 11‐protein mixture, we found that the system could efficiently separate native peptides and released N‐glycans from a single sample. We evaluated the applicability of the system to the analysis of complex biological samples using 25 μg of the lysate of a human choriocarcinoma cell line (BeWo), confidently identifying a total of 1449 proteins from a single experiment and up to 1909 distinct proteins from technical triplicates. The PGC fraction increased the sequence coverage through the inclusion of additional hydrophilic sequences that accounted for up to 6.9% of the total identified peptides from the BeWo lysate, with apparent preference for the detection of hydrophilic motifs and proteins. In addition, RP–RP/PGC is applicable to the analysis of complex glycomics samples, as demonstrated by our analysis of a concanavalin A‐extracted glycoproteome from human serum; in total, 134 potentially N‐glycosylated serum proteins, 151 possible N‐glycosylation sites, and more than 40 possible N‐glycan structures recognized by concanavalin A were simultaneously detected.  相似文献   

17.
In the complex neuronal network, chemical messengers like neuropeptides play a key role in signaling. To understand the mechanism of signaling, it is necessary to analyze the levels of neuropeptides from biological sources, which is important for neuroscience research. In the present work, a detailed investigation of the capillary zone electrophoresis (CZE) method was carried out to detect and quantify Substance P (SP), a bioactive neuropeptide, in rat brain tissues. The method involves specifically, a combination of solid phase extraction and immunoprecipitation prior to the CZE quantification. In this procedure, antibodies are used to capture the analyte of interest before the separation by CZE. Different separation parameters like buffer type, concentration, pH and applied voltage were the steps taken to study and achieve high efficiency CZE separation. CZE analysis was performed in an untreated fused-silica capillary column (35 cm×75 μm i.d.) and 185 nm wavelength using 100 mM phosphate buffer (pH 2.5) as a separation buffer. Electrophoresis in acidic mode and successive washing procedures solved the adsorption problem. The method provides a rapid analysis time of less than 15 min with 3.91% of RSD. Simultaneously, SP was quantified by Matrix Assisted Laser Desorption Ionization-Time of Flight-Mass Spectrometry (MALDI-TOF-MS) and compared with CZE data. Starting from milligram amounts of brain tissue, the method allowed the detection of low picomole amounts of SP and the combined use of CZE and MALDI-TOF-MS was a success in quantification in this study.  相似文献   

18.
Hydrophilic peptides generated from enzymic fragmentation of proteins are difficult to purify because they are either weakly bound or unretained by the reversed phase C18 columns favoured for liquid chromatographic separation of peptide mixtures. To overcome this difficulty, peptides that were not bound or only weakly bound by a C18 RP column were reacted with phenyl isothiocyanate (PITC), as used in the initial step in Edman sequencing. The hydrophobic phenylthiocarbamyl (PTC) peptide derivatives produced by the reaction were rechromatographed on the same column. Peptides generated by tryptic digestion of equine cytochrome C were used as a model system to test whether a complete set of peptide fragments could be purified by this method using just one column and solvent system. All the expected hydrophobic tryptic peptides bound to the RP column and were resolved by elution with acetonitrile, but no hydrophilic peptides were recovered as pure fractions. The column breakthrough fraction was reacted with PITC and rechromatographed on the same column, producing a profile consisting of 19 bound peaks. Further rechromatography of some of the fractions at different column temperatures enabled all six of the expected hydrophilic peptides to be purified and identified. The technique has also been applied to the sequence determination of coat protein from peanut stripe potyvirus protein, eight hydrophilic tryptic peptides being recovered and identified as PTC derivatives.  相似文献   

19.
Multiwalled carbon nanotubes (MWCNTs) have been employed for the first time as sorbents for the isolation of basic proteins from other protein species in biological sample matrices by solid-phase extraction (SPE). A microcolumn packed with MWCNTs was incorporated after appropriate pretreatment into a sequential injection system, which facilitates online selective sorption of basic protein species (hemoglobin and cytochrome c in this particular case). The retained protein species were afterwards separated from each other by sequential elution from the microcolumn through the employment of appropriate eluents. A 0.025 mol L(-1) phosphate buffer solution of pH 8.0 facilitated the efficient collection of hemoglobin, while a 0.5 mol L(-1) NaCl solution ensured the quantitative recovery of the retained cytochrome c. With a sample loading volume of 2.0 mL, enrichment factors of 11 and 15 were derived for hemoglobin and cytochrome c, along with retention efficiencies of 100% for both species and recovery rates of 98 and 90%, respectively. A sampling frequency of 8 h(-1) was achieved, and the precisions were 3.0% and 0.8% (RSD) for hemoglobin and cytochrome c at a concentration of 5.0 microg mL(-1). The practical applicability of this system was demonstrated by processing of human whole blood for isolation of hemoglobin, and satisfactory results were obtained by assay with SDS-PAGE.  相似文献   

20.
A two-dimensional chromatographic method with mass spectrometric detection has been developed for identification of small, hydrophilic angiotensin I-inhibiting peptides in enzymatically hydrolysed milk proteins. The method involves the further separation of the poorly retained hydrophilic fraction from a standard C18 reversed-phase column on a hydrophilic interaction liquid chromatography (HILIC) column. The latter column is specifically designed for the separation of hydrophilic compounds. Narrow fractions collected from the HILIC column were analysed for their angiotensin I-converting enzyme (ACE) inhibiting potential in an at-line assay. Fractions showing significant inhibition of ACE were analysed by LC–MS for structure elucidation. With this method the main peptides responsible for ACE-inhibition in the hydrophilic part of a milk hydrolysate could be determined. The ACE-inhibiting peptides RP, AP, VK, EK, and EW explained more than 85% of ACE-inhibition by the hydrophilic fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号